
Assignment 4

Probability Theory II

(EN.553.721, Spring 2025)

Assigned: March 31, 2025 Due: 11:59pm EST, April 14, 2025

Solve any four out of the five problems. If you solve more, we will grade the first four
solutions you include. Each problem is worth an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive explanation that is not contributing to your solution.

Keep in mind the late submission policy: you may use a total of five late days for homework
submissions over the course of the semester without penalty. If you need an extension
beyond these, you must ask me 48 hours before the due date of the homework and have an
excellent reason. After you have used up these late days, further late assignments will be
penalized by 20% per day they are late.

Problem 1 (Harmonic analysis and Markov chains). Let (Yn) be a Markov chain taking values
in a countable S and initialized from some probability measure µ0 over S with transition
kernel p : S × S → [0,1]. Suppose that S is irreducible.

1. Let f : S → R satisfy, for all y ∈ S,

f(y) ≥
∑
z∈S
p(y, z)f(z) = E

y
f(Y1)

and have that f(Yn) is integrable (i.e., in L1) for all n ≥ 0. Show that (f (Yn))n≥0 is a
supermartingale, a submartingale if the inequality above is reversed, and a martingale
if the inequality is an equality. (This generalizes part of Problem 3 from Homework 2.)
In these cases, f is called superharmonic, subharmonic, and harmonic, respectively.
For U ⊆ S, write ∂U = {y ∉ U : p(x,y) > 0 for some x ∈ U}. Then, f : U ∪ ∂U → R
is called super/sub/harmonic on U if it satisfies the above for all y ∈ U (a weaker
condition than having these properties on all of S).

2. Let U ⊆ S be finite and non-empty. Suppose f : U ∪ ∂U → R is harmonic on U . Show
that

max
x∈U

f(x) ≤ sup
x∈∂U

f(x).
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3. Again, let U ⊆ S be finite and non-empty. For any f : ∂U → R, show that there is
at most one g : U ∪ ∂U → R that is harmonic on U and that satisfies the “boundary
condition” g(x) = f(x) for all x ∈ ∂U .

(Hint: If g and h are two different such functions, consider using Part 2 on g −h and
h− g.)

4. Once more, let U ⊆ S be finite and non-empty. Let T := min{n ≥ 0 : Yn ∉ U} be the
exit time from U . Suppose that f : ∂U → R is bounded. Show that the function

g(x) := E
x
f(YT )

is well-defined for x ∈ U ∪ ∂U , is harmonic on U , and satisfies g(x) = f(x) for all
x ∈ ∂U . That is, averaging the value of f at an exit time gives the unique solution of
the associated boundary value problem from Part 3.

If you are familiar with basic notions of continuous harmonic analysis and/or the Poisson
partial differential equation, you should compare Parts 2 and 3 to the corresponding analytic
principles.

Problem 2 (Recurrence and transience of trees). A tree is a simple connected graph with
no cycles. All trees in this problem are locally finite, meaning each vertex has finite degree
(though the total number of vertices may be infinite). The simple random walk (SRW) on a
tree is the Markov chain taking values in the tree where each successive state is a uniformly
random neighbor of the current state.

1. Let Gd be the infinite d-regular tree, the infinite tree where every vertex has degree
d ≥ 2. (For example, d = 2 gives the integer graph Z we have discussed in class.) Fix
some x ∈ Gd. Let Wn be the number of closed walks in Gd that start at x, follow an
edge at every step, traverse a total of n edges, and end back at x. Show that Wn = 0 if
n is odd. If n is even, let Wn,k be the number of such walks that visit x exactly k times
(note that we must have k ≥ 2). Show that Wn,k ≤ 2n−k+1dk−1(d− 1)n/2−k+1.

(Hint: Group the steps of a walk into three types: (1) steps from x to one of its neigh-
bors, (2) steps from vertices other than x that increase the distance to x, and (3) steps
from vertices other than x that decrease the distance to x. How many possible pat-
terns of step types are there for a fixed n and k, and how many walks are there with
each pattern?)

2. Derive that, if d ≥ 3, then there is a constant Cd > 0 such that Wn ≤ Cd(2
√
d− 1)n.

Conclude that all x ∈ Gd are transient for the SRW on Gd for any d ≥ 3. (In contrast,
by Pólya’s theorem from class, all x ∈ G2 = Z are recurrent for the SRW on G2.)

3. Let x ∈ Gd and pick some neighbor y of x. If we remove the edge between x and y ,
then Gd is split into two trees, H and H′, whose vertices partition the vertices of Gd.
Show that, if d ≥ 3, then the SRW started from any z ∈ Gd almost surely either visits
H only finitely many times or visits H′ only finitely many times. (Of course, the SRW
must visit one of the two infinitely many times, since all vertices belong to H or H′.)
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4. Consider G2 = Z. In class we showed that the SRW on Z is recurrent. Consider now
picking some β ∈ (1

2 ,1), and taking a Markov chain on Z with the “biased” transition
kernel

p(x,y) =


β if y = x + 1,
1− β if y = x − 1,
0 otherwise

 .
Show that every x ∈ Z is transient for a Markov chain with this transition kernel with
any initialization.

Problem 3 (More on stationary measures). Let (Yn) be a Markov chain on a countable S such
that S is irreducible and every x ∈ S is recurrent. Recall that we studied the stationary
measure µx(y) := Ex[

∑Tx−1
n=0 1{Yn = y}], where Tx :=min{n ≥ 1 : Yn = x}.

1. We say that a random variable A stochastically dominates a random variable B if, for
all t ∈ R, P[A ≥ t] ≥ P[B ≥ t]. Write A � B for this relation (not to be confused with
positive semidefiniteness of matrices). Show that, if A � B, and f : R → R is strictly
increasing, then Ef(A) ≥ Ef(B) provided that both expectations are well-defined.

2. Show that, for all x,y ∈ S distinct, Py[Tx < Ty] > 0.

3. Conclude that
∑Tx−1
n=0 1{Yn = y} is stochastically dominated by a suitable geometric

random variable, and therefore that µx(y) <∞ for all x,y ∈ S.

4. Suppose S = {0,1, . . . ,M} for some M ≥ 1; in particular, S is finite. Suppose that
p,q : S × S → [0,1] are transition kernels such that, for all x ∈ S, q(x, ·) � p(x, ·)
(note that both sides here, for each fixed x ∈ S, are probability measures). Let µ be
the unique stationary probability measure of p and ν that of q. Show that ν � µ
(i.e., that stochastic domination of transition kernels implies stochastic domination of
stationary distributions).

(Hint: Write ν(k)(x) =
∑
y ν(y)p(k)(y,x). Show that ν � ν(k) for all k, and use the

convergence theorem from class.)

Problem 4 (More on stationary probability measures). As in Problem 3, let (Yn) be a Markov
chain on a countable S such that S is irreducible and every x ∈ S is recurrent. The same µx
and Tx discussed there will appear below.

1. Suppose that, for some x ∈ S, Ex[Tx] < ∞. Show that then in fact Ey[Ty] < ∞ for
all y ∈ S. Generally, such states in a Markov chain are called positive recurrent, and
positive recurrence, like recurrence, is “contagious under accessibility” (but you do not
need to prove that beyond this special case). You may use the result of Problem 3 that
the µx are measures on S.

(Hint: Use the uniqueness theorem for stationary measures, which shows that the
various µx are the same up to constant rescaling.)
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2. Let h(x,y) := Ex[Ty], the expected hitting time of y starting from x. Note that
h(x,x) = Ex[Tx] is the quantity appearing in Part 1. Show that, for all x,y ∈ S,

h(x,y) = 1+
∑
z∈S
z≠y

p(x, z)h(z,y).

3. Deduce that, if π is a stationary probability measure, then, for all y ∈ S,∑
x∈S
π(x)h(x,y) = 1+

∑
x∈S
x≠y

π(x)h(x,y).

4. Suppose that, as in Part 1, all states in S are positive recurrent. Let µx be as in Prob-
lem 3. Recall that in this case, from the existence theorem from class,

µ̂x(y) := µx(y)
µx(S)

= µx(y)
Ex[Tx]

is a stationary probability measure. Recall also that the uniqueness theorem for sta-
tionary measures implies that there is a unique stationary probability measure (since
there is a unique stationary measure up to scaling, and the scaling is fixed by asking
for a probability measure), so all µ̂x must be equal. Show more concretely that, for all
x,y ∈ S,

µ̂x(y) =
1

Ey[Ty]
,

whereby also the unnormalized stationary measures are given by

µx(y) =
Ex[Tx]
Ey[Ty]

.

(Hint: Use Part 3 to show that the first result holds for any stationary probability
measure.)

Problem 5 (Continuous state space). Consider a process (Yn) taking values in S = R formed
by Y0 = y0 for some (deterministic) y0 ∈ R and setting Yn+1 = αYn + Zn+1 for all n ≥ 0, for
some α ∈ R, where Z1, Z2, . . . ∼N (0,1) are i.i.d.

1. Show that (Yn) is a Markov chain. Describe its transition kernel (recall that in this
setting this is a function p : R×B → [0,1] for B the Borel σ -algebra of R).

2. Show that this transition kernel has a stationary probability measure if and only if
|α| < 1. In this case, describe such a probability measure µα.

3. If |α| < 1, show that Law(Yn) converges weakly to µα, for any initial y0.

4. If |α| < 1 and f : R → R is smooth and bounded, show that, as n → ∞, 1
n
∑n
i=1 f(Yi)

converges to
∫
fdµα in probability. Note that this statement, an ergodic theorem like

we saw in class, is like a law of large numbers, except the Yi are not i.i.d. but rather
arise from a Markov chain.

(Hint: Estimate the mean and variance.)
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