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1 RANDOM VECTOR THEORY

Before we continue to random matrix theory, it will be useful to establish some preliminaries
about random vectors, which will also lead us to a few important intuitions about high-
dimensional probability and geometry.

1.1 NATURAL RANDOM MODELS AND ORTHOGONAL INVARIANCE

As in the case of matrices, vectors have at least two natural interpretations: they are a list
of numbers, as well as a geometric object with a magnitude and direction (related notions
about vector and Banach spaces are abstractions of this latter viewpoint) with respect to a
basis of the space to which they belong. Each interpretation gives rise to a natural model'
of random vector.

In the list-of-numbers interpretation, it is most logical to model a random vector where
the entries are as statistically decoupled as possible. Thus, we consider

x ~ u®, (1.1.1)

a vector with entries i.i.d. from some probability measure u on R.

In the magnitude-and-direction interpretation, it is most logical to model a random vec-
tor where the magnitude and direction are as statistically decoupled as possible. Thus, we
take these two properties to be independent (that is, a random x where || x| and x /|| x| are
independent). Since the magnitude can be any random non-negative scalar, the more inter-
esting new information of such a vector distribution is in its direction. Thus, we consider

x ~ Unif (5971, (1.1.2)

a vector drawn from the uniform surface measure on the unit sphere $4-! := {x € R4 :
]l = 1} (so denoted because it is a (d — 1)-dimensional manifold).

More generally, the following property of a vector distribution is natural to consider in
the context of the magnitude-and-direction interpretation.

Definition 1.1.1 (Orthogonal invariance). We say that a random vector x € R% (or its law
Law(x)) is orthogonally invariant if, for each (deterministic) orthogonal matrix Q € O(d), we
have Law(Qx) = Law(x).

Iwe will sometimes use this word “model” instead of “law” or “distribution” to emphasize that such a
choice includes some judgement of what distributional assumption is natural or reasonable—we make such
a choice to try to model typical situations we might encounter in applications.



Without going into more technical details of actually defining this probability measure ex-
plicitly, the following result should clarify the meaning of the measure Unif (S4-1).

Proposition 1.1.2. There exists a unique probability measure supported on S~ that is or-
thogonally invariant, which we denote Unif (S4-1).

The following also shows that such distributions are nothing more than vectors distributed
as Unif (§971) rescaled by some independent random scalar, and thus are precisely the more
general class of models natural to the magnitude-and-direction interpretation that we indi-
cated above.

Proposition 1.1.3. Suppose that x is orthogonally invariant. Then, ||x| is independent of
x/||lz|, and Law(z/||x|) = Unif (54-1).

Each of these distributions makes the random vector easy to reason about in its “native”
interpretation: the entries of an i.i.d. vector and the direction and magnitude of an orthog-
onally invariant vector are both described directly in the definitions. On the other hand,
the information “across” interpretations is harder to access. We will build up some tools to
address these questions now: what do the entries of  ~ Unif ($9!) look like? And, what
are the magnitude and direction of an i.i.d. random vector?

1.2 GAUSSIAN RANDOM VECTORS

As we will see, in many ways the most natural of the i.i.d. random vectors is the standard
multivariate Gaussian x ~ N (0,1)®4. We also denote this law in the more conventional
multivariate Gaussian notation N (0,1)®4 = N (0, I;). The general meaning of this notation,
which you should be familiar with, is as follows.

Definition 1.2.1. N (i, X) for parameters i € R4 and 3 € R%5? is the probability measure
with density

;exp (—1(:1:—,u,)TZ+(a:—p,)> (1.2.1)
Jdet* (2TE) 2

relative to the Lebesgue measure on the row space of X. Here, X" is the Moore-Penrose
pseudoinverse, and det™ is the product of all non-zero eigenvalues. When X is invertible, then
det® above is the ordinary determinant, =* = X!, and the above density is with respect to
the Lebesgue measure on all of R4. We call x a Gaussian random vector if £ ~ N (u,X) for
some p and X, and a standard Gaussian random vector if u = 0 and 2 = 1.

The following are the two fundamental properties of Gaussian random vectors.

Proposition 1.2.2. The parameters pu and X are the mean vector and covariance matrix of
the random vector x ~ N (p,2):

= Ex, (1.2.2)
S=KEx—-—p(x-pn)' =txx" —pp’ (1.2.3)

Thus, the law of a Gaussian random vector is determined by its mean and covariance, or
equivalently by its linear and quadratic moments, Ex and Exax’.



Proposition 1.2.3. If ¢ € R4 is a Gaussian random vector and A € R¥*? and b € R, then
Ax +b is also a Gaussian random vector. If x ~ N (u,X), then the corresponding parameters
after this linear transformation are

Law(Ax +b) = N(Ap+ b, AZAT). (1.2.4)

These two facts taken together make it easy to do certain computations with Gaussian
random vectors: provided we only make linear transformations, we both remain within the
class of Gaussian random vectors and can keep track of all distributions involved merely by
linear algebra.”

The following remarkable facts about standard Gaussian random vectors then follow by
simple calculations using the above. These show that, in fact, a standard Gaussian random
vector is both an i.i.d. random vector and an orthogonally invariant one, thus bridging the
two natural classes of models of vectors we were discussing before.

Proposition 1.2.4. Suppose x ~ N (0,1,). For any a € $%!, we have Law({a, z)) = N (0, 1).
In particular, this law does not depend on a; the distribution of x is “the same in any direc-
tion.” Further, x is orthogonally invariant.

Proof. Using the previous results, for Q € O(d),
Law(Qx) = N (0,Q"1;Q) = N(0,1;) = Law(x), (1.2.5)

giving the second result. The first follows from the second by considering a Q whose first
row is a. O

Corollary 1.2.5. If & ~ N (0, I,), then Law(x/||z||) = Unif (§9-1).
Proof. The result follows directly from the above together with Proposition 1.1.3. O

In fact, the following elegant result, which we will not prove here, shows that the Gaus-
sian scalar measure is the only one having this property.

Theorem 1.2.6 (Maxwell). Suppose that x ~ u®? for some u a probability measure on R. If
d > 2 and x is orthogonally invariant, then u = N (0, 0%) for some o> > 0.

1.3 CONCENTRATION OF GAUSSIAN VECTOR NORMS

The above tells us that the direction of a Gaussian random vector is uniformly distributed;
in the exercises, you will see some similar more quantitative statements for more general
classes of i.i.d. random vectors. What about the magnitudes of such vectors? Again, let us
focus here on the Gaussian case.

A simple calculation gives the expectation of the norm (squared): if * ~ N (0, I;), then

Ellz|* =d - Ex? = d. (1.3.1)

ZWe will not use it in this class, but another important fact to be aware of is that the more complicated
operation of conditioning a Gaussian random vector x on the values of some linear forms (a;, ) also yields
another Gaussian random vector.



And, since ||z|? = Z’f:le is a sum of ii.d. random variables, the basic theory of such

sums from scalar probability (law of large numbers, central limit theorem, etc.) tells us to
expect that we should have ||| ~ d with high probability; more precisely, we should have
lzl? =d +O0(Vd).

Let us first try to establish this using some basic concentration inequalities. Markov’s
inequality gives

1
P 2> < e
Ll >d+t]<d+t T
which only tells us that ||z]|2 = O(d) with high probability (say, P[||z||? < 100d] = 0.99 and
similar statements); the inequality “kicks in” and gives useful information only when t = d.
Chebyshev’s inequality gives

(1.3.2)

Var[llz[?] _ 2d
= £2 T2
where we calculate Var[||z|?] = dVar[xf] = 2d. This gives the correct scaling, kicking in
when t = +/d. However, as the following result shows, the actual dependence on t above is
far from optimal.

Lemma 1.3.1. Forx ~ N(0,1;) and anyt = 0,

Plllzll?> = d +t] = P[l|lz]l* = Ellx||* + t] (1.3.3)

P[‘Ilwllz—d‘ zt]zlP[ ixf—d zt}
i=1
exp(—ﬁ) ift <d,
sz{exp<_2‘§ l_ftzd} (1.3.4)

2
= 2exp (—;min{td,t}> . (1.3.5)

Proof. The proof uses the “Chernoff method,” a proof technique behind concentration in-
equalities like the Hoeffding, Bernstein, Azuma-Hoeffding, and McDiarmid inequalities. The
method is a general instance of something you might call a “nonlinear Markov” inequality
that also appears in the proofs of other bounds like Chebyshev’s inequality. This whole
family of approaches is important to know about.

We will only deal with one of the tails; the other follows similarly and the factor of 2
appears from taking a union bound. Note that [Exi2 =1, so, defining s; := xi2 — 1, we have

d [ 4
P{fo—dzt} =P Zsizt}
i=1 i=1

d
=P |exp (2\ Z Si) > exp(?\t)}
i=1

E exp (/\ >4, si)

exp(At) (Markov inequality)
_ (Eexp(As1))¢ ,
~ exp(At) (independence)
= exp (—At + dlog Eexp(Asy)) . (1.3.6)
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Figure 1.1: The cumulant generating function /(A) appearing in Lemma 1.3.1, our bound
on it, and the region where we apply this bound.

Let us write
W(A) :=log Eexp(As;) = log Eexp(A(x? — 1)), (1.3.7)

the cumulant generating function of the random variable x? — 1 (where we retain the —1
so that the expectation is zero. You may check as a calculus exercise that the remaining
expectation is finite if and only if A < 1 and in this case

1
[Eexp(?\xf) = ﬁ, (138)
whereby | |
W) = =N+ 5 log (1 ). (13.9)

Taylor expansion shows that ¢/(A) = A2 + O(A). Turning this into a concrete bound, you
may convince yourself by plotting (see Figure 1.1) and check by a slightly tedious algebra
exercise that ¢ (A) < 2A? forall A < 1/4.

Thus we have that, provided A < 1/4,

d
P {Z x?—d=> t] <exp (=At +dy(A))

i=1
< exp (—At + 2d2\2) .

Inside the exponential now remains a convex quadratic function of A, which has a unique

minimizer that we compute to be at A* := ﬁ. We would like to set A := A*, but we must be

careful to respect that we have used a bound only holding for A < %. So, we consider two

cases:
Case 1:t < d. In this case, we may set A := A* < %. This gives

d t2
P 2_d=>t| < ——
L_lel d>t}<exp< Sd)’
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as claimed.
Case 2: t > d. In this case, we set A := 1. This gives

d
2 _t d) <_£)
[P’[izzlxi dzt}sexp( 4+8 < exp )

using that t > d. O

The heart of the calculation, you can convince yourself, is that ¢(A) = O(A?) for A
smaller than some constant. Note that the bound on A is required, since @ (A) becomes
infinite for A > % in our case. This property, with the bound on A, is called a random
variable’s being subexponential, a weaker version of the property of being subgaussian that
you might have encountered before.

The result of the Lemma is characteristic of sums of i.i.d. subexponential random vari-
ables: they have “Gaussian tails” scaling as exp(—ct?/d) up to a certain cutoff of t ~ d,
beyond which they only have “exponential tails” scaling as exp(—ct). Bernstein’s inequality
is the general tool expressing this behavior; see Chapter 1 of [RH17] for more on that. A
rough intuitive explanation for this is that, when x; themselves have exponential tails, then
large deviations of Zflzl x; of order t <« d are driven by the x; each being slightly unusually
large, while large deviations of order t > d are driven by the largest of x; being unusually
large, whereby the tail behavior becomes the same as that of an individual x;.

1.4 CONSEQUENCES FOR HIGH-DIMENSIONAL GEOMETRY

Lemma 1.3.1 is one of the fundamental facts of high-dimensional geometry. Let us unpack
its geometric meaning: informally, the result says that ||z||? = d + O(~/d) with high proba-
bility. Taking square roots and a Taylor approximation, we see that

Izl = \d + 0(d) = vd - 1+O<¢13> =JH<1+0<;E>) —Jd+o().

That is, a random standard Gaussian vector usually falls close to the spherical shell of width
O(1) around the sphere of radius /d.

This is quite counterintuitive if you have not seen it before: we think of a one- or two-
dimensional Gaussian as having its “typical set” being a solid blob around the origin.? But,
a high-dimensional Gaussian actually has a non-convex typical set, consisting of a hollow
spherical shell!*

Some other “paradoxes” of high-dimensional geometry that you might be aware of may
be explained in the same way. For instance, consider £ ~ Unif([—1,+1])®4, a uniformly
random point in the solid box [—1, +1]4. An integral calculation gives E|z|? = d[Exf =d/3.
Similar concentration inequalities to the Gaussian case show that ||z| = \/d/3 + O(1) with
high probability. In particular, then, unlike in low dimension, almost all of the mass of this

3Let us not try to define a precise notion of typical set; think of it as meaning the smallest set in which a
random variable falls with high probability.
4Sometimes such random vectors are called thin-shell in convex geometry and probability.
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Figure 1.2: An illustration of Borel’s theorem, Theorem 1.4.1, showing two low-dimensional
examples d = 2,3 where the distribution of x; - v/d is known exactly (and is not Gaussian)
as well as the Gaussian limit for large d.

box lies very close to its corners, far from the inscribed solid unit ball B4 := {x € R? : ||z|| <
1}. Using the analogous concentration inequality also implies that the ball B¢ relative to its
circumscribing box [—1, +1]¢ is bounded by

vol(B%)
= P <1
vol([—1,+1]4) m~Unif([—1,+1]d)[”wH |
< P [zl -d|l=d-1]
z~Unif([-1,+1]4)
— exp(—Q(d)). (1.4.1)

Thus, these same probabilistic tools show that the volume of the unit sphere is exponentially
smaller than the volume of its circumscribing box.’

Another way to look at our result is as implying the following approximation of laws,
which we emphasize is an informal one:

“N(0,I;) =~ Unif(S41(/d)) ” (1.4.2)

We arrive at this heuristic by combining our observations that, when x ~ N(0, I;), then
Law(z/llz|]) = Unif(S4-1) (Corollary 1.2.5) and ||z|| ~ /d (Lemma 1.3.1). This idea can be
made rigorous, for instance in the following result.

Theorem 1.4.1 (Borel’s central limit theorem). Let © ~ Unif (S471). Then, x - /d converges in
distribution as d — oo to N (0,1). In fact, for any fixed k = 1, (x1-/d,...,xx-/d) converges
in distribution as d — oo to 2N (0, I}).

>Actually, as you may look up, the true volume is even smaller than that, but to show that requires being
more careful than simply mimicking the proof of the bound for the Gaussian case in Lemma 1.3.1.
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2 FIRST STEPS WITH RECTANGULAR
MATRICES

We now take our first steps into random matrix theory, using the results from the previous
chapter to study the behavior of asymmetric or rectangular matrices with ii.d. Gaussian
entries. In particular, we will focus on the random matrix model

G ~ N(0,1)®dxm (2.0.1)

a d X m random matrix with i.i.d. Gaussian entries.

2.1 GAUSSIAN RANDOM FIELD VIEWPOINT

Let us start by trying to gain some intuition about what G does to a single y € R™ as well
as several given yi,...,y, € R™. Immediately our observations about Gaussian random
vectors become very useful, since we can easily completely characterize the laws of these
images.

Proposition 2.1.1. Law(Gy) = N (0, |ly||?1,).

Proof. Since Gy is linear in GG, whose entries form a Gaussian random vector, Gy is itself a
Gaussian random vector. So, it suffices to compute its mean and covariance:

E(Gy)i=E > GiaVa

a=1

=0,
Cov((Gy)i, (Gy)j) = E(GY)i(Gy);

E (é Giaya) (é Gjbyb)

m
= D Ya¥b-EGiaGjp
a,b=1

V0 if i = j,
| NylE ifi=g 7

where we have used that the G;, are i.i.d. and have mean zero.
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Another approach is to work with matrices; it is good to get used to using matrices inside
of expectations in the way written below. For the mean, the following operation is valid in
general when an expectation of a matrix product only has one random matrix involved:

E[Gy] = E[Gly = 0. (2.1.1)

You may check that this is just another form of the linearity of expectation. For the co-
variance, if we write g1,...,gm € R% for the columns of G, so that g, ~ N (0, I;) are i.i.d.
standard Gaussian random vectors, we may treat the entire covariance using similar manip-
ulations:

Cov(Gy) = E(Gy)(Gy)T

E (i yaQa) (é Yoy )

m
= > vavp - Egag,
a,b=1

m
= > yi- Iy

a=1

= llyl* 14,
now using that the g, are i.i.d. and have mean zero and covariance identity. O

By the same kinds of calculations, we may also deduce the joint law of any collection of
finitely many Gyy,...,Gyy.

Proposition 2.1.2. Let yi,...,yn € R™. Then,

Ny 1P Ty (yn,y2)Lq -+ - {y,yn)la
Gy EHTRY PR TONTEY S
Law : -~ |o, , _ _ _ (2.1.2)
g : : . :
Yn Yoy) Ty Y,y Ly -+ lynl?Ls

Written more concisely, if Y € R™ ™ has the y; as its columns, then the covariance matrix
aboveis (YY) ® 1,.

Proof. The result follows from identical calculations to the previous ones in each block of
the covariance matrix. O

The previous result fully characterizes the Gaussian random field (a term for a higher-
dimensional Gaussian process) that attaches the random vector Gy € R4 to each point
y € R™, since we have characterized the joint law of any finitely many points of this field.

From this characterization, we may start to probe more particular geometric properties
of the action of G. We may, for example, compute what multiplication by G does to expected
lengths:

ElGyll> = Tr(Cov(Gy)) = dllyll>. (2.1.3)

10



What about angles? By a similar calculation you can find
E(Gy1,Gyz) = Tr(Cov(Gy1, Gy2)) = d{y1,y2), (2.1.4)

(Actually, this also follows directly from the calculation for distances by the polarization
identity (y1,2) = 3ly1 + ¥2lI> — $ly1 — y2ll% Try working it out.) Indeed, G acts in the
same way on the entire Gram matrix of any finite collection of vectors in expectation: for
Y1,...,Yn € R™ organized into the columns of Y, we have

E(GY) (GY)=dY'Y. (2.1.5)

Remark 2.1.3 (Gram matrices). The Gram matrix is a fundamental geometric object that
does not always get its due in a linear algebra class. For a set of vectors y; as above, Y'Y
describes the entire relative geometry of this set. Looking at the entries, we see that the Gram
matrix contains the lengths of the y; (on the diagonal) and the angles between each pair (on
the off-diagonal). Actually, this information fully specifies the geometry of this set of vectors:
if any other y,...,y, € R™ have the same Gram matrix, then there must be an orthogonal
Q € O(m) such that Qy; = y;; that is, it is possible to get from one point cloud to the other
by rotations and reflections.

The above calculations suggest that we should normalize away the factors of d through-
out by considering instead

P 1 P 1 ®dxm
G- G, Law(G) - N (o, 3) (2.1.6)
This matrix will satisfy the appealing properties
EIGyl? = llyl, (2.1.7)
E Gy, Gy2) = (y1,92), (2.1.8)
EGY) (GY)=Y"Y. (2.1.9)

That is, in expectation, G preserves lengths, angles, and Gram matrices, and thus looks as
if it preserves all of the geometry of R™! We will see in short order that this is true in a
specific quantitative sense with high probability as well, making multiplication by G a very
useful algorithmic and computational tool.

First, though, let us clarify an important caveat. Again, the above makes it look like G
preserves the relative geometry of any given point cloud yi,...,y, € R™ while mapping it
to R4, But, this holds for any d, including d < m, and even d = 1! Thus, part of the above
optimistic intuition is a kind of illusion created by taking expectations.

There are two important cautions about this 1ntu1t10n First, once d < m, once we draw
G at random, of course we can find y # 0 such that Gy 0 (any y in the kernel of G), and
for such y we will have 0 = IIGyII < |lyll. Thus, G cannot and will not preserve the relative
geometry of any vectors we multiply it by, and in particular we can easily find vectors
depending on G whose relative ‘geometry it badly distorts. On the other hand, if we first
pick y and then draw a random G then we have reason to hope that ||Gy|| will concentrate

11



around the value ||y|| suggested by the previous calculations; indeed, our calculations show
that Law(Gy) = N (0, L1lylI21,), to which Lemma 1.3.1 should apply.

Second, even provided we make sure G is independent of the y that we multiply by it,
the extent to which the above properties hold with high probability rather than merely in
expectation will depend on how large d is: when d = 1, then G - g’ forg ~ N(0,1;), and
we still have [EHé\yiHZ = E(g,¥;)* = |lyill%. But, it should be intuitively clear that we cannot
actually have (g, vy;)?> = ||y;||*> simultaneously for very many ;, even if we choose them in
advance of drawing G. (Exercise: Try constructing concrete counterexamples.)

We will see next that what we have mentioned above are the only obstructions to G
behaving as we wish: provided that (1) d is not too small and (2) that we fix a point cloud
Y1,...,Yn in advance of drawing CA}', we will have that multiplication by G approximately
preserves the relative geometry of the y; (that is, G acts as an approximate isometry on
these points), even for d <« m.

2.2 APPLICATION: DIMENSIONALITY REDUCTION AND
JOHNSON-LINDENSTRAUSS LEMMA

Validating our heuristic reasoning above, the Johnson-Lindenstrauss lemma states that, in a
certain sense, a deterministic point cloud that is typically deformed substantially by G must
be quite large relative to the dimension we are mapping it into, so the above obstruction to G
preserving geometric structure is the only one. However, and this is an important condition
that we will return to later, this result only concerns whether G deforms pairwise distances
between the y;. This is not the same as preserving all aspects of the global geometry of the
y;, but is an intuitive notion and is relevant to various applications.

Definition 2.2.1. Given y1,...,y, € R™, a function f : R™ — R4 is pairwise e-faithful' on
the y; if, for all i, j € [n],

A -ollyi —y;lI* < If ) — fFypl* < 1 +e)llyi —y;lli° (2.2.1)

Theorem 2.2.2 (Johnson-Lindenstrauss [J1.82, IM98]). Let yi,...,yn € R™ be arbitrary and

€ € (0,1). Suppose that

logn
€’

Note that the lower bound on d does not depend on the dimension m at alll Then, with

probability at least 1 — %, multiplication by G ~ N (O, %)MX’” is pairwise e-faithful on the y;.

d =24 (2.2.2)

In fact, as the proof will make clear, by increasing the constant C in the assumption d >

C '°§2" to some C = C(K), you can achieve a success probability 1 — nl—K for any given K > 0.

Proof. The proof actually has little to do with the y;. Notice that being pairwise e-faithful
is a matter of preserving (’2“) many vector norms to within a factor in [1 — €,1 + €]. We will

My own non-standard terminology.
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show that this is true with high probability for any choice of (’;) vectors, and therefore also
for the é\(yi -yYj) = é\yi - é\yj.
Consider an arbitrary € R™. Recall that Law(Gx) = N (0, %IIwIIZId). We then have

o NGz - zl?] > ezl = P [Igh? = llzl?] > elz?]
G~N(0,1)sdxm g~N (0,5 1z(2)
1
- p H||zc||2-||g||2—||zc||2 >e||w||2]
g~N©OI Lld
- P lgl? —d| > ed
9~N(0,Id)[| g | ]
and, using that € < 1 whereby ed < d, by Lemma 1.3.1 we have
1 2
< 2exp _§€ al. (2.2.3)

This gives a bound on the probability of embedding a single vector with low distortion of
the length:

P (A -elzl? < IGzl? < 1+ o) |z)?] = 1—2exp<—1€2d>. (2.2.4)
éNN(Q'é)@ixm 8

Finally, let E;; be the event that (1 — €)[ly; — y;l12 < |Gy; — Gy;l2 < (1 + €)lly; — y;l2.
Then, by the union bound we have that

P[some E;; does not occur] < (n) - 2 exp (—é€2d>

2
<n’exp <—1€2d>
8
_ 1 exp <3 logn — 1€2d> (2.2.5)
n 8 ’
and the result follows since, if d > 24'°§2", then this is at most 1/n. O

Multiplication by a random matrix for the purposes of dimensionality reduction is some-
times called the Johnson-Lindenstrauss transform (JLT) after this result. The original JLT and
its algorithmic applications sparked many directions of further research. Let us briefly go
over a few of these.

2.2.1 SIMPLE EXTENSIONS

It is easy to extend the proof to show that we also have (1 —€)|ly;ll < I|.f (y)|l < (1 + €)ly;]]
with the same high probability up to constants (say, by increasing n by one and adding 0
to the y;, or by including further appropriate “bad events” in the union bound argument
above). As mentioned before, it is also possible to get an error bound of 1/nX for any K > 0
by suitably increasing the constant 24 in the statement of the Theorem and adjusting the
last step accordingly.
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2.2.2 LOWER BOUNDS

It is natural to ask if the result is optimal: could it be possible to reduce d even further? In
factitis not. The original paper of Johnson and Lindenstrauss [J1.82] showed that dimension
Q(logn) is needed for any given constant €, but with no dependence on €. Only relatively
recently was it shown that the Johnson-Lindenstrauss result is actually tight up to constants.
This was first shown for embeddings produced by applying a linear map to the y; (i.e.,
multiplying them by a matrix) [LN14], and finally extended to arbitrary embeddings [LN17].

2.2.3 SPARSE AND FAST JLTS

Another line of work has explored how to speed up the matrix-vector multiplication required
to form the embeddings f(y;) = CA;'yi. All such work is basically predicated on finding spe-
cial structured matrices G that allow for faster matrix-vector multiplication. The simplest
such structure is sparsity of the matrix involved; see [DKS10, KN14] for some results in
this direction. Perhaps the most elegant idea studied in this direction is quite different: the
algorithm of [AC09] uses that the fast Fourier transform algorithm may be used to mul-
tiply quickly by the discrete Fourier transform matrix. Their version of the JLT is based
on performing this multiplication (which does not reduce the dimension of the vector, as
the discrete Fourier transform matrix is square) and then subsampling a random subset of
entries of the result. There is a further caveat that some vectors have sparse Fourier trans-
forms, so subsampling their Fourier transform runs a risk of ending up with an unusually
small vector. Thus, a further preprocessing step is required to avoid this particular set of
“bad” vectors; see the paper for more details.

2.2.4 PROOF TECHNIQUE: FIRST MOMENT METHOD

As we have seen, the proof technique is merely an application of the union bound. However,
it is perhaps worth emphasizing some aspects of how specifically we are using the union
bound that also hold in many modern applications. While the union bound might seem
trivial, and indeed is when applied to just a few events, the union bound when applied to
many carefully chosen events is actually a quite sophisticated tool.? If one wishes to bound
the probability of a “bad event” E, one may decompose it into E = E; U - - - U Ey and bound

N
PIE] < 3 PLE] < N - maxPLE]. (2.2.6)
i=1 =

Often, the P[E;] are roughly the same. Then, the above becomes a clear “competition”
between N, the number of ways that a bad event can happen, and P[E;], the probability of
a given way that it can happen.’ In high-dimensional probability, often N is very large and

2See in particular the book [Tal05], whose results show that the values of a tremendous number of
random optimization-like quantities including the norms of very general Gaussian random matrices can, in
principle, be controlled accurately by nothing more than a sufficiently careful use of the union bound.

3Borrowing the language of statistical physics, these quantities are sometimes called “entropy” and “en-
ergy,” respectively.
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P[E;] is very small, leading to the kind of competition on an exponential scale that we saw
in the proof.

As an aside, it is also worth being aware that this approach is also often called the “first
moment method,” because one may phrase the bound as

N N N
P[some E; occurs] = P [Z 1{E; occurs} > 1} <[ { 1{E; occurs}} = > P[E] (2.2.7)
iz1

i=1 i=1

by Markov's inequality. Thus one is computing the first moment (or expectation) of the
random variable #{i : E; occurs}. There is also a widely used “second moment method”
which involves computing the second moment and thus variance of this random variable,
using which you can show that some E; does occur with high probability. For instance, you
could use this to show that, for a suitable point cloud, if d is too small then multiplication by
G is not pairwise e-faithful. (Note that this does not answer the question about lower bounds
posed above, since it only applies to this particular method of embedding by multiplication
by a random matrix.)

2.3 RECTANGULAR GAUSSIAN MATRICES: SINGULAR VALUES

Let us next see how to extend our approach to the JLT to understand more intrinsic proper-
ties of (A}’, namely its singular values and vectors. This will both give us a first treatment of
our first fundamental random matrix model—that of rectangular matrices with i.i.d. Gaus-
sian entries—and will hopefully further clarify why the JLT works well. We focus on “short
fat” matrices, that is, the setting d < m (often we will also mention how our results special-
ize to the asymptotic regime d < m). We also return to working with G ~ N (0, 1)®4xm
again in order to simplify the notation.

As we have mentioned, the same argument as used in the proof of Theorem 2.2.2 actually
implies the following more general result.

Theorem 2.3.1. There is a constant C > 0 such that the following holds. For any x1,...,xyN €
R™, ifd > C°N and G ~ N (0,1)®4*™m  then

€2

. 1
P|IGzill? - dlzil?| < edllz:|® foralli € [N1] =1 - N (2.3.1)
Before, we took N = n? and the x; to be all possible y; — yi, but we can apply the same tools
to any ;.
We may reframe this by rewriting

Gzl - 2] = |2] (GG — ] (dL)xi| = |2 (GTG - dI)x]. (2.3.2)

Thus it seems that, from the “point of view” of a small number of deterministic quadratic
form evaluations, the random matrix GG behaves like dI,,, and indeed the JLT is based
on this fact. Had we stuck with our previous normalization, we would see the different
normalization that G G behaves like I,,,. In any case, this of course cannot be true without
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restricting the number of quadratic form evaluations, since the matrices GG and GG
have rank at most d <« m.

This is another “paradox” (that we will resolve in short order) of high-dimensional prob-
ability and geometry: somehow, a very low-rank random matrix can actually act like the
identity against a large number of test quadratic forms. This is basically just a variation on
the same paradox we saw in G preserving lengths and angles in expectation, but note that
the above statement does actually state that an event happens with high probability, so it
cannot merely be accounted for by saying that the random variables involved are not close
enough to their expectations.

We will now work towards a more sophisticated and “more spectral” (or more intrinsic
and geometric) explanation of this phenomenon than the union bound based proof we saw,
which is relatively simple but maybe not very enlightening. To do that, we will undertake
an analysis of the eigendecomposition of the matrix GTG € RJ™, seeking to make claims
about the distribution of its eigenvectors and eigenvalues (the same information as the right
singular vectors and singular values of G).

Note that G"G > 0, so its eigenvalues are non-negative. Call these Ay > - -- > A, > 0.
Since rank(G"G) < d, we have Aj,1 = - - - = A, = 0. The remaining eigenvalues are related
to the singular values of G by A; = 0;(G)%. We begin by studying these eigenvalues, or
equivalently the singular values of G.

2.3.1 THE GEOMETRIC METHOD OF RANDOM MATRIX THEORY

It will be more convenient to instead consider the eigenvalues of GG™ € Rfyﬁ?. Since the
eigenvalues of GG™ and GG are equal except that the latter has m — d extra eigenvalues
equal to 0, GG" will provide us with the same information; at the end, we will return to
GG and deduce some geometric intuitions about it. The probabilistic reason for working
with GG instead is that, if g1,...,gm € R? are the columns of G (distributed i.i.d. as

N(0,1,)), then we have
m
GG™ = > gig/
i=1

which is a sum of m > d ii.d. random matrices of dimension d. As we will see, in such a
situation it is justified to hope for a matrix-valued law of large numbers to hold, giving us

~m- Egig
= mId

=EGG'. (2.3.3)

Roughly speaking, this heuristic is more accurate than the same applied to GG where the
roles of d and m are reversed because we want in our appeal to the law of large numbers to
work with an expression having “as much averaging as possible.”

Remark 2.3.2. To emphasize the difference in how we are discussing these two matrices:
above we observed that G G looks like d I,, from the point of view of a small enough number
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of quadratic forms, but we also observed that it cannot actually be close to this matrix (for
instance by simple rank considerations). On the other hand, the above heuristic suggests
that GG" looks like m1,, and we will show below that this is actually true, and use that to
understand the trickier behavior of G G.

Concretely, we expect the difference of operator norms ||GG™ — ml | to be small. This
kind of statement that a sum of independent or weakly dependent random matrices is close
in operator norm to its expectation is often called a matrix concentration inequality. Let us
write A := GG — ml,.

Remark 2.3.3 (Statistical interpretation). Expanding in a sum of rank one terms again, we
may also view

1 1 < T T

—A=—> gig] - Egig] (2.3.4)

m m
i=1

as the difference between a sample covariance and the true covariance of several i.i.d. draws
gi,.--,gm from N (0,1;). Thus, our investigation will also address the natural statistical
question of how good of a statistical estimator the sample covariance is (in this particular
case).

How can we show that ||A|| is relatively small? The chief trouble is that the operator norm
is a quantity whose definition involves an uncountable quantification over test vectors. We
adopt the following notation for closed balls in R4, which will be useful soon:

BY(x,r) = {yeR%: ly — x| <7}, (2.3.5)
B := B4(0,1) > S4° L. (2.3.6)

The operator norm can be formulated in either of the equivalent ways

Al = sup |xTAx| = sup |xTAx|. (2.3.7)
xesd-1 B4
In either case, if $4-! or B4 were replaced by a finite set, we could use the first moment
method, bounding P[|x"Ax| > t] (which as we will see boils down to yet another application
of Lemma 1.3.1 on the concentration of norms of Gaussian random vectors) and using a
union bound to control P[||A|| > t], but this is not the case.
But, it will turn out to be useful to take this hypothetical situation more seriously, so let
us define notation for these notions.

Definition 2.3.4. For any bounded set X ¢ R4 and M € RZx4 we define

sym s

M| x :=sup |z Mx|. (2.3.8)
reX

This is not always actually a norm; depending on X, it may only be a seminorm, where
IM || x = 0 can hold for M = 0. The definition will be useful in any case, however. Applying

the first moment method to a general random matrix gives the following:
Proposition 2.3.5. Let M € R%%4 be a random matrix and X C R% be a finite set. Then,

sym

PLIMIx > t] < |X]| -ma)>(<[P’[|:1:TM:c| > t]. (2.3.9)
pAS
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We will apply this to M = A. As mentioned above, controlling the second factor above
involving scalar probabilities will be possible using Lemma 1.3.1. Thus, the key point will be
the tradeoff between the factor of |X| in the bound above, which makes the bound deterio-
rate as | X| grows, versus the error in approximating ||A| by ||Allx, which we will soon see
decreases as | X| increases. We will therefore reduce the matter of bounding ||A|| to merely
that of finding a sufficiently small set | X| that behaves like a sufficiently dense “grid” of $4-1
or B4 to approximate the operator norm accurately (the sets we work with will not actually
be grids but will behave similarly). We call this general approach the Geometric Method of
random matrix theory, because it reduces the matter of understanding norms of random
matrices to (possibly more complicated variants of) the above purely geometric question.

2.3.2 NETS, COVERINGS, AND PACKINGS

To do this, our first task will be to develop some tools for relating || M| x for finite X to
| M ||, discretizing the continuous optimization appearing in the operator norm.

Definition 2.3.6 (e-net). A set X = {x1,...,Zn} S Y C R? is an e-net or e-covering of V if

N
V< B4z e), (2.3.10)
i=1

or equivalently if, for ally € , there is x; € X such that ||y — ;|| < €.

The following key result shows that we may indeed discretize the operator norm and
bound it by a maximum over a suitable net.

Lemma 2.3.7. Suppose that M € R&:? and X is an e-net of S*™! for € < 3. Then,
1

Mllx < IM]| <
IMllx < 1Ml < 7=

(| M || x. (2.3.11)

The same is true if X is instead an €-net of B4.

Proof. The first inequality is immediate. For the second, let x € $4! be such that |x" M x| =
M|, and let x; € X be such that || — x;|| < €. We then have
IMllx = |z Max;|
=[(x+xi—x) " M(x+x;—x)|
=|le"Mx+x"M(x;—x) + (x; —x) Mx;|
> |ze"Mzx| - |2"M(xz;,—x)| — |(x; — )" Mx;|
> (1-2¢)IM]|,

and rearranging gives the result. The same argument applies verbatim in the case of a net
of B4. O

Next, we need to develop some further tools for constructing e-nets in a way such that
we have some control over their size. As you can convince yourself, it is rather tricky to
contrust explicit e-nets by hand by completely describing the vectors of X. Fortunately,
there is a more abstract approach that lets us non-constructively show that small e-nets
exist. This proceeds by considering a complementary notion:
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Figure 2.1: An illustration of a covering (left) and a packing (right) of a given set in R? by
balls of the same radius.

Definition 2.3.8 (e-packing). A set X = {x1,...,zn} S Y C R% is an e-packing of VY if the
balls B (x;, €) are pairwise disjoint, or equivalently if llzi—x;ll > 2€ foralli, j € [N] distinct.

Proposition 2.3.9. Let X be a maximal e-packing of Y/, one that cannot be extended to a
larger packing by adding more points. Then, X is a 2e-net of V.

Proof. Let y € Y \ X. Since adding y to X must yield a set that is not an e-packing, there
must be some x € X such that B4(x, €) n B4(y,€) = @. Letting z be in the intersection, we
have ||z -yl < ||z — 2|l + |ly — z|| < 2¢. Thus, either y € X or y € B%(x, 2¢) for some x € X,
giving the result. O

Thus, to show that small nets exist, it suffices to show that small maximal packings exist.
But, there is a fundamental volumetric bound on the size of arbitrary packings, including
maximal ones: roughly speaking, the total volume of the union of the balls in a packing
cannot be much bigger than the volume of the set being packed (at least for a nice full-
dimensional convex set).

Proposition 2.3.10. Let X be any e-packing of B4. Then, | X| < (1 + %)d.

Proof. We have
U B4(z,€) < BY(0,1 +¢), (2.3.12)
reX

and the union on the left-hand side is disjoint. Thus, taking volumes,

|X| - vol(B4(0,€)) < vol(B4(0,1 + €)). (2.3.13)
Rearranging,
vol(B4(0,1 + €)) <1+e>d ( 1)d
< = =(1+— 2.3.14
X = = ol®a(a, €) € el (e3.14)
by scaling considerations of the volumes of d-dimensional balls. O

Corollary 2.3.11. For any € > 0, there exists an e-net X of B of size | X| < (1 + 2)4.

Proof. Let X be a maximal §-packing of B%. By Proposition 2.3.10, |X| < (1 + %)d, while by
Proposition 2.3.9, X is an e€-net. O
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2.3.3 COARSE NON-ASYMPTOTIC BOUND ON SINGULAR VALUES

Finally, we may put together the pieces to bound ||A||: we use the existence of a not-too-large
e-net by the above non-constructive method, approximate the operator norm by discretizing
to test vectors in this net, and use the first moment method.

Theorem 2.3.12. If d < m, then

PLIA] > 64Vdm] < 2 exp (—3) . (2.3.15)
Proof. Let us fix € := 1/4. Let X be an e-net of B% as in Corollary 2.3.11, by which we can
assume |X| < (1 + 2)? = 94, By Lemma 2.3.7, we have [|A]| < —%5-|Allx = 2[|Allx. Thus we
may bound

t
PllAl =t] <P [IIAIIX > 2] (Lemma 2.3.7)
_ .
<94 . maxP ||z Az| = = (Proposition 2.3.5)
xrxeX | 2

and writing & := x/||x||, since ||z|| < 1 for all x € X, we may bound

<94 . maxP | |2TAZ| >

.
—1. (2.3.16)

reX | 2 |

Let us work with this inner probability for any given x (and its corresponding normalization

x) for a moment: expanding the definition of A,

p [|;@TA£| > ;] p [\ IGT&12 —m| > ;]

P [I gll? —m| > t]. (2.3.17)

g~N(0,In) 2

These probabilities are all equal, not depending on a, so we have

t
PlIAl=t]1<9%- P [|||g||2—m| >]
g~N(0,Ip) 2

To the remaining probability we can apply Lemma 1.3.1, which it will be convenient to do
specifically in the form (1.3.5). We can also bound 9 < exp(3). Together, these observations

give
1 . (2 ¢
< 2exp (3d—8m|n{41n,2}> (2318)

Now, let us take t := C~/dm for some C to be chosen momentarily. Noting that /dm > d
since d < m, we may further bound

2
< 2exp (3d - é min {id, gd})

. {c? c
= 2exp (d- [S—mm{?)z,m}]> (2.3.19)

and finally we see that taking C := 64 gives the result. O
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To give a corollary in a form that is maybe easier and more intuitive to understand
concerning the singular values of GG, we will use the following basic eigenvalue perturbation
inequalities.

Proposition 2.3.13. Let A,A € RZ¥4. Then,

Ad(A) — Al < A4(A+A) <A1 (A+A) <A (A) + (Al (2.3.20)

Proof. For both bounds, we use the variational description of the eigenvalues. For the upper
bound, we have

Al(A + A)

sup ' (A+A)x

resd-1

sup (z" Az + [|All)

resd-1

( sup CBTACB) + Al

resd-1

= A1(A) + llAll.

IA

Similarly, for the lower bound,

Ad(A+A)= inf 2T(A+A)x
resd-1
> inf (T Az - ||Al])
resd-1
= ( inf a:TAa:> — 1Al
resd-1

= Aa(A) — Al O

These are special cases of Weyl’s inequalities, which are a good more general tool to be aware
of. The proof of the more general inequalities similarly uses a more general variational form
of arbitrary eigenvalues given by the Courant-Fischer min-max theorem.

Corollary 2.3.14. For any d < m,
P[vm - 64Vd < 04(G) < 01(G) < Vm +32Vd | = 1 - 2exp(—d).

Proof. We will use the basic bounds

—
+
®

R IR

<1+ for all x = 0, (2.3.21)

l-x=1- forall0 < x < 1. (2.3.22)

Both may be viewed as consequences of the concavity of the square root function: the first
says that one affine transformation of the square root lies below a tangent line to it, while
the second says that another affine transformation lies above a secant segment connecting
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two points on its graph. Then, on the event that ||A| > 64+/dm from Theorem 2.3.12, using
that GG = m1I; + A, we have

01(G) = A1 (GGT)
<\m + ||A]l (Proposition 2.3.13)
<\ym + 64Vdm

14642
m
d .
< Jm- (1+32,/) (2.3.21)
m

= Jm + 32d.

Likewise, for 0;(G) we have a similar argument. First, though, note that if m — 64/dm < 0,
then /m — 64+/d < 0 as well, so the result holds vacuously in this case. Otherwise,

04(G) =\Aa(GGT)

>m — ||A|l (Proposition 2.3.13)

>\Vm —64Vdm

- |1-64] L
m
(o)

> - |1 - 64, — (2.3.22)
m

= J/m — 64d,
completing the proof. O

Of course, what you should remember is just the softer statement that the singular
values of G are, with high probability, all in the range

Jm-0H4ad) <o (G) <---<04(G) < /m+0((K/d) (whend <m) (2.3.23)

We highlight this because it is a fundamental fact about the spectra of random matrices
that you should try to commit to your intuition. We will see considerably more precise
elaborations of this claim soon, too. Note that, indeed, once m > d, then all of these
singular values are \/m to leading order and GG' ~ ml , as we proposed earlier.

The top d eigenvalues of the larger matrix GTG € R ™ are also then approximately m;
however, for this matrix, there are m — d more eigenvalues that are identically zero. Thus,
the eigenvalues of %GTG are all either zero or close to 1; that is, it is close to a projection
matrix. It is then natural to ask: a projection to what subspace? To answer this question we

must understand the singular vectors of G, to which we now turn our attention.
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2.4 RECTANGULAR GAUSSIAN MATRICES: SINGULAR VECTORS

While the ordered singular values o,(G) > --- > 04(G) are well-defined for any G, the
individual singular vectors are not always well-defined. Suppose we take the singular value
decomposition (SVD),

a
G=UzIV'™ = Z O'i’u,i’UlT,
i=1

for {ui,...,uq} C R and {vy,...,v4} € R™ orthonormal sets. When are we justified in
viewing u;(G) and v;(G) as well-defined functions?

Actually, the answer is never, because the SVD does not disambiguate between the pair
of singular vectors (u;, v;) and the pair (—wu;, —v;); either pair would give rise to the same
decomposition. To get around this minor issue, we may instead consider the rank-one matri-
ces associated to the pairs of singular vectors, Z; = u;v; . These matrices are unchanged by
a simultaneous change of sign, and from them we may also recover the more geometrically
meaningful projection matrices

Li = ZlZlT = UiUiT, (241)
Ri = Z:Zl = ’Ul”UlT. (242)

It is sometimes useful for the sake of intuition to identify a projection matrix with the
subspace it projects to; thus, u;u; and v;v;” describe not the singular vectors but the entire
lines in those directions. Z; contains the information of this pair of lines, and its being one
of the rank-one matrices in the SVD says that G maps the line spanned by v; to that spanned
by u,. Z; also contains one more bit of information, saying whether that mapping maps v;
to a positive or negative multiple of w;.

However, there are more nuances. For instance, if 0; = 0, then Z; is equivalent to —Z;
in the SVD. And, more substantially, if 0; = 0, even if neither are zero, then Z; and Z; are
not uniquely determined. Indeed, writing

~

U := u; Uuj S [RZXd, V= Vi Vj S [szm,

we have that the sum of the two corresponding terms in the SVD is
oi(R; + RJ) = o;(u;v; + ’U,j'v}—) = aiﬁVT = Ul(ﬁQ)(VQ)T

for any @Q € O(2). This gives rise to equivalent decompositions of R; + R; as a sum of
rank-two matrices. Since o; = 07, the expression o;(R; + R;) is what appears in the SVD for
these two components, so these equivalent decompositions mean that R; and I; are not
uniquely determined in this case.

As an extreme example, consider the case d = m and G = I, the identity matrix. All
d of its singular values are 1, and it admits many SVDs of the form G = Zil u;u; for any
orthonormal basis {u,...,us4}. Thus, the more repeated singular values there are, the more
dire this issue becomes. However, as the following fact of linear algebra shows, these are
the only issues.
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Proposition 2.4.1. Suppose that G € R>™ withd < m, 04(G) > 0, and the singular values
01(G),...,04(Q) are distinct. Then, there exist unique Z; = Z;(G) € R¥™™ such that each
R; has rank one, has o,(Z;) = 1, and

d
G=> 0i(GZ(Q).

i=1

2.4.1 DISTINCTNESS OF SINGULAR VALUES

Remarkably, the conditions of the above Proposition 2.4.1 hold not merely with high prob-
ability but almost surely for Gaussian random matrices (and, though we will not discuss it
here, for other matrices whose entries are independent random variables whose laws are
absolutely continuous with respect to the Lebesgue measure).

Theorem 2.4.2. Let G ~ N (0,1)®¥™ with d < m. Then, almost surely, the following hold:
1. O'd(G) > 0.

2. The singular values o, (G),...,04(G) are distinct, i.e., we have the strict inequalities
01 (G) > - >04(G).

We will use the following result to establish both parts, which should be intuitive but is
a little bit clunky to prove. You can prove it as an exercise—one approach is to show the
more geometric fact that any hypersurface has Lebesgue measure zero.

Lemma 2.4.3. Suppose p € R[x1,...,XnN] is a non-constant polynomial, and g ~ N (0, Iy).
Then, for any a € R, P[p(g) = a] = 0.

The first part of Theorem 2.4.2 can be proved quite directly using this result, as follows.

Proof of Theorem 2.4.2, Claim 1. Note that we have 04(G) = 0 if and only if G is rank-
deficient, which occurs if and only if P(G) := det(GG") = 0. (Note that this is not the case
if we take det(G'TG) instead, which is zero whenever d < m.) It is easy to show that p
is a non-constant polynomial of the dm entries of the matrix argument: it is non-constant
because, for example, for rank-deficient matrix inputs it is zero while for full-rank inputs it
is non-zero. Thus P[0, (G) = 0] = P[P(G) = 0] = 0 by Lemma 2.4.3. O

For the second part we will need to establish some tools from the theory of symmetric
polynomials as well as a relationship between polynomials of the eigenvalues of a matrix
and polynomials of the entries of a matrix. First, the following are the basic notions of the
general theory of symmetric polynomials.

Definition 2.4.4. A polynomial f € R[tq,...,t;] is symmetric if, for all permutations T € S,
we have f(tn(l), ey trr(d)) = f(tl, e td).

Theorem 2.4.5 (Fundamental theorem of symmetric polynomials). Define the power sum
polynomials

a
sk(try ..., ta) i= > th,
i=1
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Then, if f € R[ty,...,tz] is a symmetric polynomial, then there exists some polynomial g of
d variables such that

f(ty,...,ta) =gs1(tr, ..., tq),...,84(t1, ..., tq)).

In words, this result says that any symmetric polynomial is some polynomial of the power
sum polynomials, or that the power sum polynomials algebraically generate the symmetric
polynomials (which form a subring of the ring of all polynomials).

The power sum polynomials have an important role in random matrix theory, because
they serve as a bridge between the properties of the entries of a matrix and the properties
of the eigenvalues, a connection that we will see much more sophisticated uses of later. The
basic underlying fact is quite simple, however. Suppose here and below that X & Rfyfnd. Let
us define the power trace polynomials of X,

d
Sk(X) =Tr( XY = > XaowXasas -+ Xy ax Xagar-

The latter expression shows that S (X) is a polynomial of the entries of X.
Proposition 2.4.6. sy (A1(X),...,Az(X)) = Sk(X).

This is just a simple consequence of the fact that the eigenvalues of X* are the A;(X)k.
However, it leads to the following important corollary.

Corollary 2.4.7. Suppose that F(X) = f(A(X),...,A4(X)) for f a symmetric polynomial
(i.e., F(X) is a symmetric polynomial of the eigenvalues of X ). Then, F(X) is also a (not
necessarily symmetric) polynomial of the entries of X.

Remark 2.4.8. The assumption that f is symmetric is crucial. For instance, you may check as
an exercise that F(X) = A1(X) is not a polynomial of X.

With these tools, we are now ready for the proof of the second part of the main Theorem.

Proof of Theorem 2.4.2, Claim 2. Consider first a function of X € R4%4, defined as:

sym »
[T ti-tp?

l<i<j=d

F(X):= f(A1(X),...,A4(X))
=[] QiX)-2;(X)2

l<i<j=<d

f(tll"'!td):

Clearly we have that X has a repeated eigenvalue if and only if F(X) = 0. Further, F(X)
satisfies the conditions of Corollary 2.4.7. Therefore, F(X) is a polynomial of the entries of
X. (Note that, remarkably, we can draw this conclusion non-constructively from the tools
above.)

Now, returning to the setting of the Theorem, we see that G has a repeated singular
value if and only if P(G) = 0, where P(G) := F(GG"). As before, P is non-constant merely
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because some matrices do have repeated singular values and some do not. Thus, we may
conclude as before by Lemma 2.4.3 that

P[G has a repeated singular value] = P[P(G) = 0] = 0,
as claimed. 0

Remark 2.4.9. The proof above shows that the set of symmetric matrices with a repeated
eigenvalue is a hypersurface in the space R, which may be identified with R4+D/2_ A
priori, since we described this set as {X : F(X) = 0} for a polynomial F, we only know that
its codimension is at most 1 (i.e., the dimension of this hypersurface is at most @ - 1)
Actually, its codimension is exactly 2. For example, the dimension of [ngxnf is %ﬂ) = 3, while
the 2 X 2 matrices with a repeated eigenvalue are merely multiples of the identity, whose
dimension is clearly 1 = 3 — 2 (indeed, these matrices form a line in the space of all symmetric
matrices). Note that one polynomial constraint can in fact encode several, for instance if
F(X) = F(X)?+F,(X)%2 =0, thenF,(X) = F.(X) = 0. As discussed for instance by [BKL18],
a more complicated version of this sum-of-squares structure is indeed what happens in the
case of F(X).

We have established that, on an almost sure event, we are justified in speaking of the
singular vectors of a Gaussian random matrix, at least via the rank-one matrices Z;(G) and
the projections to the left and right singular vectors L;(G) and R;(G). We are now ready
to study the laws of these objects.

2.4.2 ORTHOGONAL INVARIANCE FOR MATRICES

We will see that orthogonal invariance, as we discussed for vectors earlier, is crucial to
understanding these distributions. The appropriate definitions for random matrices are as
follows:

Definition 2.4.10 (Orthogonal invariance of matrices). We say that a random matrix X €
RAX™M (or jts law Law(x)) is:

- Left-orthogonally invariant if, for each (deterministic) orthogonal matrix QQ € O(d), we
have Law(Q X)) = Law(X).

- Right-orthogonally invariant if, for each (deterministic) orthogonal matrix QQ € O(m),
we have Law(X Q) = Law(X).

- Bi-orthogonally invariant if it is both left- and right-orthogonally invariant.

Further, we say that a random symmetric matrix X € Rfyxmd is symmetric-orthogonally in-
variant if Law(Q X Q") = Law(X) for each Q € O(4).

The following property is then simple to check using either explicit mean and covariance
calculations or by using that the rows and columns of an i.i.d. Gaussian random matrix are
ii.d. standard Gaussian vectors, which are themselves orthogonally invariant.

Proposition 2.4.11. G ~ N (0,1)®4*™ js bj-orthogonally invariant.
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Corollary 2.4.12. If G ~ N (0,1)2%™ then L;(G) and R;(G) are both symmetric-orthogonally
invariant, for eachi = 1,...,d. Further, the stronger equalities of law hold that

Law((QLl(G’)QT,...,QLd(G)QT)) _ Law((Ll(G),...,Ld(G))> for all Q € O(d),

Law((QRl(G)QT,...,QRd(G)QT)> _ Law((Rl(G’),...,Rd(G))> for all Q € O(m).

The following basic linear algebra observation is a useful preliminary to the proof.

Proposition 2.4.13 (Invariance and equivariance of SVD). Let G € R4*™ be a (deterministic)
matrix such that o, (G) > - - - > 04(G) > 0. Let Q1 € O(d) and Qr € O(m). Then,

0i(QLGQy) = 0i(G),

Zi(Q:1GQy) = Q1LZi(G)Qy,
Li(Q:GQyp) = QLLi(&3)QY,
Ri(Q:GQy) = QrRi(G) Q.

Proof of Corollary 2.4.12. Let us prove the simpler claim about the individual L;: we have,
by combining the above results,

Law(QL;(G)QT) = Law(L;(QQ)) (Proposition 2.4.13)
= Law(L;(G)). (Proposition 2.4.11)

The result for the individual R; and the collections of all L; and R; follows similarly. O

Let us comment on the intuition behind what we have derived so far. Consider the
L;(G). Recall that, for u; some choice of the left singular vectors in the SVD (which for
G are almost surely well-defined up to a sign flip), L;(G) = u;u;. As we have discussed,
we may identify this rank-one projection matrix with the line formed by span(u;). Thus the
collection (L;(G),...,L;(GQ)) is a collection of d orthogonal lines, i.e., a coordinate system
for R4 consisting of d orthogonal axes, although without a “positive direction” chosen for
any of the axes. The above result says that this object for G ~ N (0, 1)®4*™ has an orthog-
onally invariant distribution. We will next try to formally explain in what sense this makes
(L1(G),...,Li(G)) have the law of the unique “uniformly random” choice of coordinate
system.

2.5 APPLICATION: COMPRESSED SENSING

We will now see one last application of the ideas developed so far. This is for the problem
of compressed sensing, recovering x € R™ from y = Gz € R? with G € R¥™ (the same
dimensions as before).

For general x € R™, we need G to be injective, which requires d > m. Compressed
sensing concerns making d much smaller, provided we are promised that x is sparse. In
this setting, while we will discuss taking G random, we view ourselves as having control
over GG (the so-called sensing matrix) in general, so the sparsity assumption should be seen
as in a basis of our choosing. Thus to take advantage of compressed sensing we should
encode any prior knowledge of x in a basis that makes x sparse. (For example, if  encodes
an image, we might choose a wavelet basis.)
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2.5.1 NULL SPACE AND RESTRICTED ISOMETRY PROPERTIES

Let us denote sparsity by
lxllo:=#{i € [m] : x; = 0}. (2.5.1)

Note that this “£°-norm” is not actually a norm, because it is not homogeneous in .

Assuming that ||x||o < k makes the task of recovering ax easier. At the extreme, if k = 1,
then y = Gx is just (up to scaling) one of the columns of GG. Thus provided the columns
of G are well-separated, it will be easy to recover . You can show that it is possible to
construct exp(Q(d)) unit vectors in R4 that have, say, pairwise inner products of magnitude
each at most 1/2, which we may use as the columns of GG (and such a choice will be robust
to a small amount of noise). Thus when k = 1 then we may take d as small as O (logm)
while still being able to recover any 1-sparse x.

How does the situation change for larger k? We will show below that it actually does not
change that much.

First, let us specify what we mean by a being “recoverable.” The following definition is
not standard but useful.

Definition 2.5.1. We say that G distinguishes k-sparse vectors if Gx + Gx' for any x + x’
with || z|lo, |2’ |lo < k.

If G distinguishes k-sparse vectors, then compressed sensing is information-theoretically
possible: by, say, brute force search over an e-net of sparse vectors followed by a rounding
procedure, we may exactly recover any k-sparse x from y = Gax. We will not go into the
computational feasibility of compressed sensing here, which is a deep area in its own right.
You may look up the role of £!-norm minimization for such algorithms to get started with
computational approaches.

The following more linear-algebraic definition is actually equivalent to distinguishing
k-sparse vectors.

Definition 2.5.2 (Null space property). We say that G has the k-null space property (k-NSP)
if, for all x = 0 with ||x|o < k, Gz # 0.

Proposition 2.5.3. G distinguishes k-sparse vectors if and only if G has the 2k-NSP.

Proof. If G does not distinguish k-sparse vectors, then there exist x + x’ with ||x||o, ||x|lo <
k such that Gx = Gx'. In particular, G(x —x’) = 0, and ||x — x'||p < 2k, so G does not have
the 2k-NSP. Conversely, if G does distinguish k-sparse vectors and '’ # 0 has ||z" || < 2k,
then we may write & = x —x’ for = ' and ||x|o, ||x|lo < k (by partitioning the 2k indices
on which x” is non-zero in some arbitrary way). Reversing the above argument then shows
that G has the 2k-NSP. O

We will in fact be able to show the following, more quantitative property.

Definition 2.5.4 (Restricted isometry property). We say that G has the (k, )-restricted isom-
etry property ((k, 6)-RIP) if, for all x + 0 with || x|y < k,

(1-0)llzll* < IGz)* < (1 + )zl (2.5.2)
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The following implication is immediate.
Proposition 2.5.5. If G has the (k, 5)-RIP for any 6 < 1, then G has the k-NSP.

The RIP is more useful than the NSP both for analyzing compressed sensing when some
noise is further added to y = G, and for analyzing algorithms for recovering x, but here
we will just view it as an analytic tool for establishing the NSP.

2.5.2 RANDOM SENSING MATRICES
The following is the main result that we will show.

Theorem 2.5.6. Forany1l <k <m and 6 € (0,1), if

160 m

and G ~ N (0,1)%4*M  then

k

k
P[G has the k-NSP] = P[G has the (k,5)-RIP] = 1 — >1-2 (m) . (2.5.3)

2
(%)
Note that this scaling of d is consistent with our earlier observation that d 2 logm was the
right condition for k = 1. Remarkably, the result implies that, while

d>=m

is needed for arbitrary x to be recoverable from G, for the specific case of k-sparse vectors
it suffices to have only the far smaller

d z klog () (2.5.4)

Proof. For S < [m] with |S| = k and = € R™, let 8 € R be the restriction of x to the

indices in S. Likewise, for G € R¥™ let G'S) € R4*k be the restriction of G to the columns

whose indices are in S. If ||xz|lo < k and the non-zero indices of x are contained in such S,
then

lzl? = |l (2.5.5)

Gzr =Gz, (2.5.6)

We may then view the (k, §)-RIP as requiring that, for all S = [m] with |S| = k and all

) e Rk, we have
A -8 ze®)? < IGDZ2S? < (1 +5) Iz |°. (2.5.7)

But this just amounts to asking that

1-86 <G ' G®) <A (GY'GY) <1+ 6, (2.5.8)
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or again equivalently that

IGS ' G® - I < 6. (2.5.9)
We will then proceed by union bounding,
P[G does not have the (k,5)-RIP] < > P[IG®'G® - I > &1. (2.5.10)
se()

This is almost exactly the kind of deviation that we bounded before in Theorem 2.3.12. First,
let’s decode our statement into that form. Introduce H ~ N (0,1)®**4  the scaling and
aspect ratio that Theorem 2.3.12 addresses. We have Law(G) = Law(d~V2HT). Thus,

P[IG®'GS - I > 8] = P[HdHHT IkH > 5]
= P[||HH™ - dI|| > §d].

The only difference between this and what Theorem 2.3.12 covered is that there we were
concerned with deviations of the order O(+kd), while here we are concerned with O(d),
which is much larger since d > k under our assumption. But, we may still apply the inter-
mediate result (2.3.18) from that proof, which gives

2,92
< 2exp (3k—;min{54g 62d})

52
= 2exp (3]{ — 320{) (2.5.11)

using that 6 < 1 so §%/4 = (5/2)% < §/2. Returning to the union bound, we first recall the
non-asymptotic bounds on binomial coefficients

(7) = (%)= (%)
k k k ’
which we will use twice below. We may bound the terms in the union bound uniformly as

2
P[G does not have the (k,5)-RIP] < (T) - 2exp (3k - ;d)

em\k 5°
S(k) - 2 exp 3k—372d

(2.5.12)

completing the proof. The alternate form of the bound follows from the lower bound on
binomial coefficients above. O
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