Assignment 4

Random Matrix Theory in Data Science and Statistics

(EN.553.796, Fall 2025)

Assigned: November 7, 2025 Due: 11:59pm EST, December 1, 2025

Solve all problems. Each problem is worth an equal amount towards your grade.

Submit solutions in KTgX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive discussion that is not contributing to your solution.
You are welcome to include images if you think that will help explain your solutions.

Problem 1 (Concentration inequalities). This problem will give you some intuition for how
Poincaré and modified log-Sobolev (MLS) inequalities behave for scalar random variables.
Recall that, for X € R a scalar random variable, the Poincaré inequality is the condition that,
for some C > 0, for all continuously differentiable f where both sides are finite,

Var[f(X)] = C - E(f"(X))?, (1)
and the MLS inequality is instead the condition that, for the same class of f,
Entlexp(f(X))] = C - E[(f'(X))2exp(f(X))]. (2)

For this problem, you may make further mild assumptions on the class of f the inequalities
quantify over, as needed to ensure that all expectations you encounter are guaranteed to
converge (the actual definition of the correct “domain” of these inequalities can get quite
technical).

1. Suppose that X satisfies the Poincaré inequality (1) for some constant C. Show that
there exists some K > 0 depending only on the law of X such that the absolute mo-
ments of X are bounded as

EIX|" < (Kn)" 3)

for all n > 1. Using this, give an example of a random variable all of whose moments
are finite but which does not satisfy a Poincaré inequality.



2. Show that a random variable X ~ Exp(1) (with density 1{x > 0} exp(—x) dx) satisfies
a Poincaré inequality for some C > 0. Compute its moments and show that they are at
least E|X|™ = (cn)" for some ¢ > 0, so the bound in (3) is roughly tight.

3. Show that X ~ Exp(1) does not satisfy an MLS inequality for any C > 0.

4. Show that if X satisfies the MLS inequality with constant C, then it also satisfies the
Poincaré inequality with constant 2C. Together with Part 3, this implies that, up to
the specific values of the constants, the MLS inequality is a strictly stronger condition
than the Poincaré inequality.

Problem 2. This problem is a continuation of Homework 3, Problem 3, Part 3. Recall that
statement: if g ~ N (0,X) and h ~ N (0,A) are arbitrary N-dimensional centered Gaussian
vectors such that E(g; — g;j)? < E(h; — hj)? for all i, j € [N], then E max; g; < E max; h;.

1. The Gaussian width of a compact set X c R4 is

w(X) := E  max{g,x).
g~N(0,I;) TEX
By the orthogonal invariance of g, you may view this as measuring the width of X in
the direction of a random ray through the origin in R4; hence the name. Let W ~
GOE(4,1) (recall this means W;; = W;; ~ N (0,1 + 1{i = j}) independently for all
i < j). Show that, for any compact X < S4-1(1),

E max ' Wx < 2w (X).
W ~GOE(d) ®€X

2. Specializing the above result, prove the following three bounds. Note that there are
no further error terms in any of these statements; they hold exactly as written and



non-asymptotically for all d:

[E[Al(W)]z[E[ max = Wz | <2-d,

zeS4-1(1)

i |2
E [ max x Wzx|<2./=-4,
xze{+1//d}4 i T

E max Wzl <2 -d.
zeS4-1(1)
x;=0 for all ie[d]

Explain why the first result is sensible in relation to but does not follow from the
semicircle limit theorem.

3. Let G ~ N(0,1)®¥m je., a random rectangular d x m matrix with ii.d. standard
Gaussian entries. Adapt your argument from above to show that

E[IGI] < Vd + v/m.

Explain why this result is sensible in relation to but does not follow from the Marchenko-
Pastur limit theorem.

Problem 3. This problem, using a technique in a somewhat similar spirit to Homework 3,
Problem 3 used above, explores the concentration of functions of Gaussian random variables
without using MLS inequalities. Let f : R" — R be a smooth function and let g ~ N (0, I},)
be a standard n-dimensional Gaussian vector.

1. Let g,h ~ N(0,I,) independently, so that h is an independent copy of g. Write
g(t) =sin(t)g + cos(t)h for t € [0,7r/2]. This is a kind of interpolation in the style of
Homework 3, Problem 3, but between two independent copies of the same Gaussian
random vector. Show that

/2
f(g) - f(R) = JO (VF(g(D),g (1) dt,

and that Law((g(t),g’(t))) = Law(g,h) = N (0, I»;) for all t € [0, 1r/2], whereby the
integrand above has the same law at each t € [0, 17/2].

2. Let ¥ : R — R be a convex function. Show that
T
E¥(Fg) - f(h) < E¥(T(VF(g),h),
g.h g,h 2
and therefore also that

T
EY(f(g) - Ef(9) < EY (2<Vf(g),h>> .



3. Suppose now that f is also L-Lipschitz, i.e. that |V f(x)| < L for all x € R" (for a
smooth function this is equivalent to the usual definition). Prove that f(g) — Ef(g) is
(%L)Z-subgaussian, and therefore that

2
P[If(g) —Ef(g)] > t] <2exp (—;;) -
This is a slightly weaker (in the constant in the exponential) version of the Gaussian
Lipschitz concentration inequality we discussed in class. In fact, relatively simple
further arguments show that the same holds even if f is not smooth, and can be
Lipschitz in the weaker sense that |f(x) — f(y)| < L|lx — yl| for all z,y € R™. You
may use this without proof below.

4. Let £ ~ N(0,%) for any n X n covariance matrix X > 0. Write 0?2 := max;-, Var[x;] =
max;, Xj;. Let M := max{_, x;. Prove that there is an absolute constant ¢ > 0 such that

2
PIM — EM| > t] < 2exp (—ctz) .
o

5. Prove that the map A\ : Rfyxnf — R4 mapping a matrix to its eigenvalues in descending
order is 1-Lipschitz when matrices are given the Frobenius norm and vectors the £
norm. Using that, prove that there is an absolute constant ¢ > 0 such that, for W ~

GOE(A4), W= %W, any L-Lipschitz function f: R — R, and any i € [d],

t2
P >t <2exp —cpd ,

— — 2
IPHf(Ai(W)) — Ef(A:{(W)) \ >t|<2exp (—cLZd) .
Note that the first result makes it easy to upgrade weak convergence in expectation
of esd(W') to the semicircle law to various stronger kinds of weak convergence (weak
convergence in probability, L? or any L?, almost surely, and so forth).

=2 FAW) —E= 3 F(Ai(W)
i=1 i=1




