Assignment 2

Random Matrix Theory in Data Science and Statistics

(EN.553.796, Fall 2025)

Assigned: September 29, 2025 Due: 11:59pm EST, October 16, 2025

Solve all problems. Each problem is worth an equal amount towards your grade.

Submit solutions in KTgX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive discussion that is not contributing to your solution.
You are welcome to include images if you think that will help explain your solutions.

Problem 1 (Project proposal). Propose a paper or collection of related papers to read, a com-
putational experiment to perform, or an open problem to study for your final project. See
the course website for ideas. Write roughly one paragraph here doing one of the following:

- If you plan to read a paper, tell us the title and author(s), read the abstract and intro-
duction, and describe how it relates to the course, what aspect of the paper you are
interested in, and what else you might have to read or do to understand it.

- If you plan to run a computational experiment, describe the experiment, give one or
two relevant references that might help set your expectations for what you will find,
and explain what the experiment will tell you about random matrices.

- If you plan to try working on an open problem, write down the problem, give a few
references concerning it, and outline in one paragraph what approach you plan to try
or what experiments you can perform.

In all cases, your final project will consist of a short presentation at the end of the class
(about 10 minutes) and a short write-up about whatever you choose here.

Problem 2 (Invariance). We have repeatedly seen various notions of orthogonal invariance
in class. This problem will ask you to work out some of their properties.

1. Suppose & € R? is a random vector whose law has a smooth density p on R4 and is
orthogonally invariant, i.e., having Law(Qx) = Law(x) for all Q € O(d). Show that the
scalar ||x| and the vector Z := x/||x| are independent random variables.

You do not need to show it here, but you should be aware that a similar general fact
(though a little tricky to state precisely) is true of random matrices: the eigen- or
singular values of an orthogonally invariant matrix are independent of the eigen- or
singular vectors.



2. Consider the following abstracted version of a situation we encountered in discussing
the singular vectors of a Gaussian random matrix. Suppose that L € deyfnd is arandom
matrix that always takes values having rank(L) = 1 and A; (L) = 1, i.e., L is a rank-one
projection matrix. There then exist exactly two distinct unit vectors u;,u» such that

Lu; = u;, and u; = —uy». Draw i ~ Unif({1, 2}) independently of L, and define @ := u;.

Suppose that L is symmetric-orthogonally invariant, i.e., has Law(QLQ") = Law(L)
for all Q € O(d). Show (precisely!) that the law of u is then orthogonally invariant,
i.e., having Law(Qu) = Law(u).

3. Let Q ~ Haar(O(d)). Calculate the entrywise moments

EQij, EQijQke, EQijQreQmn, EQijQieQmnQyrs,

in terms of d and the indices i, j, k, ¢, m,n,r,s € [d].

4. Let U ~ Haar(Stief(m, d)) for some 1 <d < m, and let x € S ! ¢ R™ be determinis-
tic. Let P := UUT € RY ™ and note that this is a projection matrix. Let g ~ N (0, Iy,).
Show that

2 - = = 2
Law([| Pz|?) = Law( git: - +9u ) .

g%+...+g§+g§+l+...+g12ﬂ
State and prove a concentration inequality expressing that, if d and m are both large,
then || Pz||? is close to % with high probability.

Problem 3 (Semicircle limit theorem). We showed in class that, if v has mean 0, variance 1,
and all moments finite, then W@ ~ Wig(d, v) (see the lecture notes for this notation) have
the random measures p; := esd(I/)V\("”) converging in expected moments to the semicircle
distribution psc, where W@ := ﬁW("”. That is, for all k > 1,

(JZLFT; E kadud(x)] = Jxkdﬂsc(x)-

1. Show that the above convergence, for any given k > 1, also holds in L?. That is, show
that, for all k > 1,

lim Var kadud(x)] = 0.
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Conclude that, for any polynomial p(x),
deﬂd ~E U Pdud] Zo.

(HINT: The (random) integral in the variance is equal to Iy = d,% Tr(W(‘”"'). Expand
Var[Iy] = [E[I;f] — (E[Ix])?. The convergence of expected moments tells you the asymp-
totics of the second term. For the first term, adapt our combinatorial argument from
class. When you expand out the square of the trace completely, associate each term
with a graph whose edges are given by two closed walks (it might help to say that this
graph has k “red” edges and k “blue” edges). Show that for odd k this expression is
0(1), while for even k its leading order term is the same as that of (E[Ix])?, so that we
still have Var[Ix] = o(1).)

. Let N(€) = #{i : [Ai(W@D)| > 2 + ¢}, the number of eigenvalues of W@ that lie
outside of the support of psc by € or more. Show that, for any € > 1,

N(E) < m Tr(W(d)Zﬁ)-

Conclude that
N(e) =0

as d — o for any fixed € > 0, and therefore that also

1 == P
i > IfA(W D)) =0
A (WW@)|>24€
for any fixed bounded function f and € > 0.
(HINT: Use Markov’s inequality on P[N(€) > 1], then use the convergence of expected

moments and a suitable bound on the Catalan numbers.)

. Adapt the argument from Part 2 to show that the latter conclusion also holds for
polynomials (even though they are not bounded): show that for any polynomial p,

% S pa(W@y) B,

A (WD) [>2+¢€

(HINT: Reduce to the case of monomials p(x) = x*. Then, bound 521:\/\,\>2+c A% <
W 2?1:1 Af’/ for 2¢ > k. Apply Markov’s inequality again, use convergence of
expected moments, and take £ growing.)

. Following the sketch from class, put together Parts 1, 2, and 3 to prove a version of
the semicircle limit theorem with weak convergence in probability: show that, for any
bounded continuous function f : R — R,

deﬂd Z de#sc-

You may use the Weierstrass approximation theorem (stated in the lecture notes).



Problem 4 (Robustness of semicircle limit theorems). Now you will probe the assumptions
needed on the result of Problem 3. Recall that, in proving convergence of expected moments
in class (which Problem 3 uses heavily), we relied on all moments of v being finite. In this
problem, you will show that that assumption can be relaxed considerably. To make your life
a little easier, we will work only with smooth and compactly supported test functions f; the
arguments are not hard to adapt to general bounded continuous functions.

1. Let A, B € R%x4, Show the perturbation inequality

sym

ZMOM Ay (B)? < | A~ B}

T permutatlon of [d]

You may use the Birkhoff-von Neumann theorem, which states that the set of doubly
stochastic d x d matrices (i.e., P € R4 such that P;; = 0 for all i, j € [d], > ; P;; =
foralli € [d], and >; P;j = 1 for all j € [d]) is the convex hull of the set of the d X d
permutation matrices (those P with exactly one 1 in each row and each column and
all other entries 0, of which there are d!). You may also use that a linear function over
a convex polytope is maximized at one of the vertices.

2. Let f be a smooth and compactly supported function. Show that there is a constant
K = K(f) depending only on f such that, for any d > 1 and A, B € R%x4

sym

QU

K
< ﬁllA — Bllr.

d
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3. Prove that, if v has mean 0 and variance 1 (but other moments not necessarily finite),
then for any smooth and compactly supported f we have

deUd Z dellsc-

4. Find a choice of v that has mean 0 and variance 1 but such that, for W@ ~ Wig(d, v),
we have limg_ IP[II%WWII > C,] = 1 for some diverging sequence C; — . Conse-
quently, the Wigner edge or norm limit theorem (the statement that || ﬁW(”” | - 2in
probability) that we will mention in class does require further moment assumptions
on v.



