
Assignment 1

Random Matrix Theory in Data Science and Statistics

(EN.553.796, Fall 2025)

Assigned: September 8, 2025 Due: 11:59pm EST, September 22, 2025

Solve all three problems. Each problem is worth an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive discussion that is not contributing to your solution.
You are welcome to include images if you think that will help explain your solutions.

Problem 1 (Subgaussianity). We call a random variable centered if its expectation is zero. A
centered random scalar X ∈ R is called σ 2-subgaussian if E exp(λX) ≤ exp(σ 2λ2/2) for all
λ ∈ R. A centered random vector x ∈ Rd is called the same if, for all u ∈ Rd with ‖u‖ = 1,
〈u,x〉 is a σ 2-subgaussian random scalar.1

1. Show that if X is a centered random scalar that is σ 2-subgaussian, then aX is a2σ 2-
subgaussian, and that if X1, . . . , Xn are independent and each Xi is σ 2

i -subgaussian,
then

∑n
i=1Xi is (

∑n
i=1σ

2
i )-subgaussian. Conclude that a random vector with indepen-

dent entries that are each centered and σ 2-subgaussian is itself σ 2-subgaussian.

2. Show that the following three conditions on a centered random scalar X are equivalent:

(a) There exists σ 2 > 0 such that X is σ 2-subgaussian.

(b) There exists c > 0 such that, for all t > 0, P[|X| ≥ t] ≤ 2 exp(−ct2).

(c) There exists λ > 0 such that E exp(λX2) <∞.

3. For X a centered subgaussian scalar, define

‖X‖sg := inf{t > 0 : E exp(X2/t2) ≤ 2}.

Note that this is well-defined by Part 2. Show that ‖ · ‖sg is a norm on the space of
centered subgaussian random variables (over a given probability space).

(Hint: Prove and use that (X + Y)2 ≤ (1+ a)X2 + (1+ 1
a)Y

2 for any a > 0 (you might
be more familiar with the case a = 1), together with Hölder’s inequality.)

1It is also sometimes useful to say that an X not necessarily centered is σ 2-subgaussian if X−EX satisfies
our condition, but we will not do that in this assignment.
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4. Suppose that x ∈ Rd is a centered σ 2-subgaussian random vector. Show that there are
constants c, C > 0 such that

P[‖x‖ > Cσ
√
d] ≤ exp(−cd).

That is, a high-dimensional O(1)-subgaussian vector has norm O(
√
d) with high prob-

ability.

(Hint: Use ε-nets and adapt our discretization of the operator norm from lecture to
apply instead to the Euclidean norm ‖x‖ of a vector.)

5. Let X ∈ Rd×dsym be a centered random symmetric matrix. Write vec(X) ∈ Rd(d+1)/2 for
the (symmetric) vectorization of X , the vector formed by concatenating the entries on
and above the diagonal of X (choose any order of entries you like). Show that there
are constants c, C > 0 such that, if vec(X) is a σ 2-subgaussian random vector, then

P[‖X‖ > Cσ
√
d] ≤ exp(−cd).

In particular, this implies that a high-dimensional random symmetric matrix with in-
dependent O(1)-subgaussian entries has operator norm O(

√
d) with high probability.

(Hint: Use ε-nets again.)

Problem 2 (Properties of Gaussian measure). The Gaussian measure is the most important
one in probability theory, if not all of mathematics. Here you will derive some of its algebraic
properties that we will use in class and future assignments.

1. Let g ∼ N (0,Σ) for some Σ ∈ Rd×dsym with Σ � 0 (i.e., Σ is positive semidefinite). Prove
that, for any smooth function f : Rd → R with f(x) ≤ C‖x‖K for some C,K > 0, we
have

E[gif(g)] =
d∑
j=1

ΣijE[∂jf(g)] = (ΣE[∇f(g)])i (1)

where ∂if is the partial derivative with respect to the ith argument and ∇ is the gra-
dient (the second equality is just by the definition of gradient).

(Hint: Integrate by parts. You might also find it useful to first treat the case Σ = Id,
and then to observe that g and Σ1/2h for h ∼N (0,Id) have the same law.)

2. Let g ∼N (0,1) (a Gaussian scalar, not a vector). Prove that, for k ≥ 1, Eg2k−1 = 0 and
Eg2k =

∏k
i=1(2i− 1).

3. In the setting of Part 2, Eg2k ≤ (2k)k. Show that, in fact, there exists a constant C > 0
such that, if X is σ 2-subgaussian (see Problem 1), then E|X|k ≤ (Cσ 2k)k/2 for all k ≥ 1.

(Hint: Use the identity that, if Y ≥ 0, then EY =
∫∞
0 P[Y > t]dt. If you have not seen

this before, sketch a proof of it as well.)
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4. Let g ∼ N (0,Σ) as in Part 1, and let 1 ≤ i1 < · · · < ik ≤ d. Let M be the set of
all matchings of the set I = {i1, . . . , ik}: a matching is a set of disjoint pairs {ia, ib}
whose union is I. For example, the three matchings of {1,2,3,4} are {{1,2}, {3,4}},
{{1,3}, {2,4}}, and {{1,4}, {2,3}}. Prove that

E

 k∏
a=1

gia

 = ∑
M∈M

∏
{a,b}∈M

Σab. (2)

(For example, one case of the claim is that Eg1g2g3g4 = Σ12Σ34 + Σ13Σ24 + Σ14Σ23.)
Generalize this to allow for repetitions among the i1, . . . , ik. Try to be precise. Explain
why Part 2 is a special case of this latter generalization.

(Hint: Induction.)

Problem 3 (Johnson-Lindenstrauss and some linear algebra). In this problem, you will prove
a lower bound on the dimension required for embedding a particular point cloud that almost
matches the Johnson-Lindenstrauss lemma. Along the way, you will see some linear algebra
that you might not have been introduced to before.

1. Let λ1, . . . , λn ≥ 0. Show that

‖λ‖0 := #{i : λi ≠ 0} ≥ (
∑n
i=1 λi)2∑n
i=1 λ

2
i
= ‖λ‖

2
1

‖λ‖2
2

. (3)

Reinterpret this as a relationship between the rank, trace, and Frobenius norm of a
positive semidefinite matrix.

2. Suppose M ∈ Rn×nsym has M � 0, Mii = 1 for all i ∈ [n], and |Mij| ≤ 1/
√
n for all i ≠ j.

Show that rank(M) ≥ n/2.

3. Let v ∈ Rr . Consider the monomials in the entries of v , polynomials of the form
va1

1 · · ·v
ar
r for ai ≥ 0. The degree of such a monomial is a1 + · · · + ar . Show that the

number of different monomials of degree exactly k is
(
r+k−1
k

)
, and show the bound(

r + k− 1
k

)
≤
(
e · r + k− 1

k

)k
.

(Hint: For the bound, first use the series expansion of exp(k) to show that k! ≥ (k/e)k.)

4. For k ≥ 1 and X ∈ Rn×nsym with X � 0, write X�k for the matrix that has entries

(X�k)ij = Xkij , i.e., for the entrywise kth power of X (note that X�k ≠Xk). Show that

X�k � 0, and that rank(X�k) ≤
(
rank(X)+k

k

)
.

(Hint: View X as a Gram matrix, Xij = 〈vi,vj〉 for vi ∈ Rrank(X), and write X�k in the
same way. If you do this at all, the first part will follow, but be sure to explain why. If
you do it carefully, the second part will follow as well. To do that, observe and find a
way to use the formal resemblance with the first result of Part 3.)
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5. Let y0 := 0 and y1 := e1, . . . ,yn := en, a point cloud of n + 1 vectors in Rn (ei is the
ith standard basis vector, with 1 in the ith coordinate and 0 in all others). Show that
there are constants c, ε0 > 0 such that, for all ε < ε0 and d ≤ c logn

ε2 log(1/ε) , there do not

exist z0,z1, . . . ,zn ∈ Rd such that

(1− ε)‖yi − yj‖2 ≤ ‖zi − zj‖2 ≤ (1+ ε)‖yi − yj‖2 for all i, j ∈ {0,1, . . . , n}.

Conclude that the dimension of the embedding satisfying the above property that is
described by the Johnson-Lindenstrauss lemma for these points is tight up to a factor
of O(log(1/ε)).

(Hint: Form the matrix X ∈ Rn×nsym with

Xij := 〈zi − z0,zj − z0〉
‖zi − z0‖ · ‖zj − z0‖

for each i, j ∈ {1, . . . , n} (omitting the zero index). Bound the off-diagonal entries
of X . Raise X to a large enough entrywise power to derive a contradiction between
Parts 2 and 4 of the problem. The bound from Part 3 will be useful.)
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