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Lecture 21: Rigorous Analysis of SK Model

1 Proof Ideas for SK Model

More about Parisi Formula

Overlap Density

Last class, we discussed the Parisi formula for analyzing the limit of the free energy as n→ 0.
We saw this unusually “flipping” of the order of indexes mj to now be between 0 and 1. Here
we review the conclusions:

Recall the block replica symmetry breaking ansatz matrix Q∗ ∈ Rn×n with parameters
n ≥ m1 ≥ · · · ,mk > 1 and a0 ≤ a1 ≤ ak ≤ · · · 1. The entry aj appears n(mj −mj+1) times,

thus the proportion of the matrix which is entry aj is
n(mj−mj+1)

n(n−1)
. As n→ 0, this approaches

mj+1 −mj, i.e. the “probability” of drawing aj from the matrix approaches mj+1 −mj.

Thus, consider n = 0 = m0 ≤ m1 ≤ · · · ,≤ mk+1 = 1 and define the step function

a : [0, 1]→ [0, 1]

x 7→
k+1∑
j=1

1{mj−1 ≤ x < mj}aj

that is a(x) is constant value aj on interval [mj−1,mj).
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Consider this as the cumulative distribution function (CDF) of the overlap distribution
µ which is a probability measure over the interval [0, 1] defined by

µ([B,A]) = a−1(B)− a−1(A)

As the number of replica symmetry breaking terms k →∞, the step function approaches
a continuous CDF function which defines the overlapp density µ via this CDF.

Connections to Heat Formula

In the Parisi formula, we have second derivative terms ∂2

∂h2
appearing from the expression

Eg∼N(0,1)[f(g + h)]. This is a consequence of the heat equation.
The heat equation tells us the solution of the PDE

∂

∂t
u(t, h) =

1

2

∂2

∂h2
u(t, h) (1)

with initial condition u(0, h) = f(h). I.e., the time derivative of u is equal to half the second
derivative in space, with initial condition at time 0. The solution to the heat equation is

u(t, h) = Eg∼N(0,t)[f(g + h)] (2)

thus by the heat equation,

∂

∂t
Eg∼N(0,t)[f(g + h)] =

∂2

∂h2
Eg∼N(0,t)[f(g + h)]

Talagrand Proof Ideas

Consider x ∈ {± 1√
N
}N (so hyper cube normalized to be unit vectors) and we are given a

random matrix W . For each entry x in unit hypercube, we have value xTWx. Put these
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together in a vector G0
x ∈ R2N

G0
x =


xT1Wx1

xT2Wx2
...

xT2NWx2N


can also think of G0

x being defined by the choice of W , thus is a mapping from RN×N → RN ,
maps a matrix to a vector. When we write G0

x, G
0
y we refer to single entries of the vector G0

at values x and y. We note a few properties of the mean and covariance of the vector G0
x,

EW [G0
x] = 0

EW [G0
xG

0
y] = EW [xTWxyTWy]

= EW [

(
N∑
i=1

x2
iWi,i + 2

∑
j>i

Wi,jxixj

)(
N∑
i=1

y2
iWi,i + 2

∑
j>i

Wi,jyiyj

)
]

=
2

N

N∑
i=1

x2
i y

2
i +

4

N

∑
j>i

xixjyiyj

=
2

N
〈x, y〉2

The quantity we are interested in studying is the expected maximum of 1
N
xTWx over the

original hypercube, which is equal to

EW [M(W )] = EW [ max
x∈{± 1√

N
}
G0
x] (3)

that is, the expected maximum entry of the G0
x vector. We will provide an upper bound on

this quantity.

2 Gaussian Interpolation

Gaussian interpolation is a method to bound the expected value of a function over a Gaussian
by comparing the value to an expectation over a simpler Gaussian which we can compute.

For some function F : RM → R, we want to study Eg∼N(0,Σ0)[F (g)] that is the expected
value of F over a Gaussian with covariance Σ0. We construct a continuous evolution from
covariance matrix Σ(0) → Σ(1) by Σ : [0, 1]→ RM×M

≥0 . Define the function of time

f(t) = Eg∼N(0,Σ(t))[F (g)]

by fundamental theorem of calculus,

f(1)− f(0) =

∫ 1

0

f ′(t)dt

f ′(t) =
∂

∂t
Eg∼N(0,Σ(t))[F (g)]
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if we can show this derivative f ′(t) > 0 for all t, then f(1) > f(0) and solving f(1) provides
an upper bound on the quantity f(0) we want to study. Pick a matrix A(t) such that the
covariance matrix is the square of this matrix Σ(t) = A(t)A(t). Then

f(t) = Eg∼N(0,I)[F (A(t)g)]

all t dependence is inside F function and we can take derivatives more easily.

f ′(t) =
∂

∂t
Eg∼N(0,I)[F (A(t)g)]

= Eg∼N(0,I)[
∂

∂t
F (A(t)g)]

= Eg[〈∇F (A(t)g), A′(t)g〉]

= Eg[
M∑
i=1

∂iF (A(t)g)
∑
j

A′(t)i,jgj]

=
∑
j

Eg[
M∑
i=1

∂iF (A(t)g)A′(t)i,jgj]

=
∑
j

Eg[
M∑
i=1

M∑
k=1

∂i∂kF (A(t)g)A(t)k,jA
′(t)i,j] (Integration by parts)

=
∑
i

∑
k

Eg[∂i∂kF (A(t)g)(A(t)A′(t))i,k]

= Eg[〈∇2F (A(t)g), A(t)A′(t)〉]

that is, expected sum of entry wise multiplication of hessian of F and A(t)A′(t). We can
“symmetrize” the inner product, for any matrix H

〈H,A(t)A′(t)〉 = 〈H, A(t)A′(t) + A′(t)TA(t)T

2
〉

thus define the symmetrized matrix

Σ′(t) = A(t)A′(t) + A′(t)TA(t)T

which yields the following lemma.

Lemma 2.1.

f ′(t) =
1

2
〈Σ′(t), Eg∼N(0,I)[∇2F (g)]〉

Consequences of Lemma

We want to deduce situations where the above inner product value is positive, thus f(1)
provides an upper bound on f(0). Say we use Gaussian interpolation

Σ(t) = (1− t)Σ(0) + tΣ(1)

Σ′(t) = Σ(1) − Σ(0)

constant time change for any t. Thus as a corollary
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Corollary 2.2. If 〈∇2F (x),Σ(1) − Σ(0)〉 ≥ 0 ∀ x, then we have that f(0) ≤ f(1).

Note that we only want the expected value to be positive, so ensuring the inner product
is positive at all locations is a more restrictive condition then we need but implies the
expectation is positive. Furthermore, if F (x) is convex, it’s Hessian is positive definite, thus
we would only require Σ(1) − Σ(0) to be PSD as well.

Corollary 2.3. If F is convex and Σ(1) − Σ(0) is PSD, then f(1) ≥ f(0).

Finally, as a most restrictive condition of all, we can ensure that entry wise, the multi-
plication of ∇2F and Σ(1) − Σ(0) is positive

Corollary 2.4. If {
∂i∂jF (x) ≥ 0 Σ

(1)
i,j ≥ Σ

(0)
i,j

∂i∂jF (x) ≤ 0 Σ
(1)
i,j < Σ

(0)
i,j

for all x, then f(1) ≥ f(0).

3 Application of Gaussian Interpolation to Maximum

Value Problem

Our goal is to study the function

F (g) = max
x∈{± 1√

N
}
gx

but instead we study the differentiable soft max function and take β →∞,

Fβ(g) =
1

β
log(

∑
x

eβgx)

called the “Free Energy.”

∂iFβ(g) =
eβgi∑
j e

βgj

denote the value pi(g) = eβgi∑
j e
βgj

. Note p as a vector is positive and sums to one, can be

thought of as a probability density or weighting over values i. Second derivative is then

∂i∂jFβ(g) =

{
pi(g)− pi(g)2 i = j

−pi(g)pj(g) i 6= j

since the pi(x) are all positive and less than 1, we have that pi(g) − pi(g)2 ≥ 0 and
−pi(g)pj(g) ≤ 0. Thus, by element wise corollary 2.4, we want a matrix Σ(1) which is
larger than Σ(0) on all diagonal entries, and smaller on all off diagonal entries.

5



Lemma 3.1 (Weak Sudakov-Fernique Inequality). If Σ
(1)
i,i ≥ Σ

(0)
i,i , Σ

(1)
i,j ≤ Σ

(0)
i,j i 6= j then

EΣ(0) [max
x
gx] ≤ EΣ(1) [max

x
gx]

For example, consider a rank 1 matrix Σ = 11T . By above result, max value under
this covariance is less than max value under identity covariance Σ = IM×M . Furthermore,
expected value is even larger for matrix with diagonal entries 1 and non-diagonal entries
constant − 1

M−1
. Thus weak Sudakov inequality gives a convenient way to compare expected

max values simply by properties of covariance matrix entries.

4 Preview of Next Class

We will cover the Strong Sudakov Fernique inequality, which covers the covariance matrices
defined by

Σ(0)
xy =

2

N
〈x, y〉2

Σ(1)
xy =

4

N
〈x, y〉

turns out Σ(1) above is covariance matrix of Gaussian process

G(1)
x =

2√
n
〈g, x〉

under these results

E(
M(W )

N
) ≤ E( max

x∈{± 1√
N
}
〈g, x〉] =

2

N
E[‖g‖1]

= 2Eg∼N(0,1)[|g|]

= 2

√
2

π

which gives same upper bound provided by the replica-symmetric solution of Sherrington
and Kirkpatrick,

2P ∗ ≤ 2

√
2

π

but as an upper bound and with a more rigorous formulation.
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