Lecture 21: Rigorous Analysis of SK Model

1 Proof Ideas for SK Model

More about Parisi Formula

Overlap Density

Last class, we discussed the Parisi formula for analyzing the limit of the free energy as $n \rightarrow 0$. We saw this unusually "flipping" of the order of indexes m_{j} to now be between 0 and 1 . Here we review the conclusions:

Recall the block replica symmetry breaking ansatz matrix $Q^{*} \in \mathbb{R}^{n \times n}$ with parameters $n \geq m_{1} \geq \cdots, m_{k}>1$ and $a_{0} \leq a_{1} \leq a_{k} \leq \cdots 1$. The entry a_{j} appears $n\left(m_{j}-m_{j+1}\right)$ times, thus the proportion of the matrix which is entry a_{j} is $\frac{n\left(m_{j}-m_{j+1}\right)}{n(n-1)}$. As $n \rightarrow 0$, this approaches $m_{j+1}-m_{j}$, i.e. the "probability" of drawing a_{j} from the matrix approaches $m_{j+1}-m_{j}$.

Thus, consider $n=0=m_{0} \leq m_{1} \leq \cdots, \leq m_{k+1}=1$ and define the step function

$$
\begin{aligned}
a:[0,1] & \rightarrow[0,1] \\
x & \mapsto \sum_{j=1}^{k+1} 1\left\{m_{j-1} \leq x<m_{j}\right\} a_{j}
\end{aligned}
$$

that is $a(x)$ is constant value a_{j} on interval $\left[m_{j-1}, m_{j}\right)$.

Consider this as the cumulative distribution function (CDF) of the overlap distribution μ which is a probability measure over the interval $[0,1]$ defined by

$$
\mu([B, A])=a^{-1}(B)-a^{-1}(A)
$$

As the number of replica symmetry breaking terms $k \rightarrow \infty$, the step function approaches a continuous CDF function which defines the overlapp density μ via this CDF.

Connections to Heat Formula

In the Parisi formula, we have second derivative terms $\frac{\partial^{2}}{\partial h^{2}}$ appearing from the expression $E_{g \sim N(0,1)}[f(g+h)]$. This is a consequence of the heat equation.

The heat equation tells us the solution of the PDE

$$
\begin{equation*}
\frac{\partial}{\partial t} u(t, h)=\frac{1}{2} \frac{\partial^{2}}{\partial h^{2}} u(t, h) \tag{1}
\end{equation*}
$$

with initial condition $u(0, h)=f(h)$. I.e., the time derivative of u is equal to half the second derivative in space, with initial condition at time 0 . The solution to the heat equation is

$$
\begin{equation*}
u(t, h)=E_{g \sim N(0, t)}[f(g+h)] \tag{2}
\end{equation*}
$$

thus by the heat equation,

$$
\frac{\partial}{\partial t} E_{g \sim N(0, t)}[f(g+h)]=\frac{\partial^{2}}{\partial h^{2}} E_{g \sim N(0, t)}[f(g+h)]
$$

Talagrand Proof Ideas

Consider $x \in\left\{ \pm \frac{1}{\sqrt{N}}\right\}^{N}$ (so hyper cube normalized to be unit vectors) and we are given a random matrix W. For each entry x in unit hypercube, we have value $x^{T} W x$. Put these
together in a vector $G_{x}^{0} \in \mathbb{R}^{2^{N}}$

$$
G_{x}^{0}=\left(\begin{array}{c}
x_{1}^{T} W x_{1} \\
x_{2}^{T} W x_{2} \\
\vdots \\
x_{2^{N}}^{T} W x_{2^{N}}
\end{array}\right)
$$

can also think of G_{x}^{0} being defined by the choice of W, thus is a mapping from $R^{N \times N} \rightarrow R^{N}$, maps a matrix to a vector. When we write G_{x}^{0}, G_{y}^{0} we refer to single entries of the vector G^{0} at values x and y. We note a few properties of the mean and covariance of the vector G_{x}^{0},

$$
\begin{aligned}
E_{W}\left[G_{x}^{0}\right] & =0 \\
E_{W}\left[G_{x}^{0} G_{y}^{0}\right] & =E_{W}\left[x^{T} W x y^{T} W y\right] \\
& =E_{W}\left[\left(\sum_{i=1}^{N} x_{i}^{2} W_{i, i}+2 \sum_{j>i} W_{i, j} x_{i} x_{j}\right)\left(\sum_{i=1}^{N} y_{i}^{2} W_{i, i}+2 \sum_{j>i} W_{i, j} y_{i} y_{j}\right)\right] \\
& =\frac{2}{N} \sum_{i=1}^{N} x_{i}^{2} y_{i}^{2}+\frac{4}{N} \sum_{j>i} x_{i} x_{j} y_{i} y_{j} \\
& =\frac{2}{N}\langle x, y\rangle^{2}
\end{aligned}
$$

The quantity we are interested in studying is the expected maximum of $\frac{1}{N} x^{T} W x$ over the original hypercube, which is equal to

$$
\begin{equation*}
E_{W}[M(W)]=E_{W}\left[\max _{x \in\left\{ \pm \frac{1}{\sqrt{N}}\right\}} G_{x}^{0}\right] \tag{3}
\end{equation*}
$$

that is, the expected maximum entry of the G_{x}^{0} vector. We will provide an upper bound on this quantity.

2 Gaussian Interpolation

Gaussian interpolation is a method to bound the expected value of a function over a Gaussian by comparing the value to an expectation over a simpler Gaussian which we can compute.

For some function $F: \mathbb{R}^{M} \rightarrow \mathbb{R}$, we want to study $E_{g \sim N\left(0, \Sigma^{0}\right)}[F(g)]$ that is the expected value of F over a Gaussian with covariance Σ^{0}. We construct a continuous evolution from covariance matrix $\Sigma^{(0)} \rightarrow \Sigma^{(1)}$ by $\Sigma:[0,1] \rightarrow R_{\geq 0}^{M \times M}$. Define the function of time

$$
f(t)=E_{g \sim N(0, \Sigma(t))}[F(g)]
$$

by fundamental theorem of calculus,

$$
\begin{aligned}
f(1)-f(0) & =\int_{0}^{1} f^{\prime}(t) d t \\
f^{\prime}(t) & =\frac{\partial}{\partial t} E_{g \sim N(0, \Sigma(t))}[F(g)]
\end{aligned}
$$

if we can show this derivative $f^{\prime}(t)>0$ for all t, then $f(1)>f(0)$ and solving $f(1)$ provides an upper bound on the quantity $f(0)$ we want to study. Pick a matrix $A(t)$ such that the covariance matrix is the square of this matrix $\Sigma(t)=A(t) A(t)$. Then

$$
f(t)=E_{g \sim N(0, I)}[F(A(t) g)]
$$

all t dependence is inside F function and we can take derivatives more easily.

$$
\begin{aligned}
f^{\prime}(t) & =\frac{\partial}{\partial t} E_{g \sim N(0, I)}[F(A(t) g)] \\
& =E_{g \sim N(0, I)}\left[\frac{\partial}{\partial t} F(A(t) g)\right] \\
& =E_{g}\left[\left\langle\nabla F(A(t) g), A^{\prime}(t) g\right\rangle\right] \\
& =E_{g}\left[\sum_{i=1}^{M} \partial_{i} F(A(t) g) \sum_{j} A^{\prime}(t)_{i, j} g_{j}\right] \\
& =\sum_{j} E_{g}\left[\sum_{i=1}^{M} \partial_{i} F(A(t) g) A^{\prime}(t)_{i, j} g_{j}\right] \\
& =\sum_{j} E_{g}\left[\sum_{i=1}^{M} \sum_{k=1}^{M} \partial_{i} \partial_{k} F(A(t) g) A(t)_{k, j} A^{\prime}(t)_{i, j}\right] \quad \text { (Integration by parts) } \\
& =\sum_{i} \sum_{k} E_{g}\left[\partial_{i} \partial_{k} F(A(t) g)\left(A(t) A^{\prime}(t)\right)_{i, k}\right] \\
& =E_{g}\left[\left\langle\nabla^{2} F(A(t) g), A(t) A^{\prime}(t)\right\rangle\right]
\end{aligned}
$$

that is, expected sum of entry wise multiplication of hessian of F and $A(t) A^{\prime}(t)$. We can "symmetrize" the inner product, for any matrix H

$$
\left\langle H, A(t) A^{\prime}(t)\right\rangle=\left\langle H, \frac{A(t) A^{\prime}(t)+A^{\prime}(t)^{T} A(t)^{T}}{2}\right\rangle
$$

thus define the symmetrized matrix

$$
\Sigma^{\prime}(t)=A(t) A^{\prime}(t)+A^{\prime}(t)^{T} A(t)^{T}
$$

which yields the following lemma.

Lemma 2.1.

$$
f^{\prime}(t)=\frac{1}{2}\left\langle\Sigma^{\prime}(t), E_{g \sim N(0, I)}\left[\nabla^{2} F(g)\right]\right\rangle
$$

Consequences of Lemma

We want to deduce situations where the above inner product value is positive, thus $f(1)$ provides an upper bound on $f(0)$. Say we use Gaussian interpolation

$$
\begin{aligned}
\Sigma(t) & =(1-t) \Sigma^{(0)}+t \Sigma^{(1)} \\
\Sigma^{\prime}(t) & =\Sigma^{(1)}-\Sigma^{(0)}
\end{aligned}
$$

constant time change for any t. Thus as a corollary

Corollary 2.2. If $\left\langle\nabla^{2} F(x), \Sigma^{(1)}-\Sigma^{(0)}\right\rangle \geq 0 \forall x$, then we have that $f(0) \leq f(1)$.
Note that we only want the expected value to be positive, so ensuring the inner product is positive at all locations is a more restrictive condition then we need but implies the expectation is positive. Furthermore, if $F(x)$ is convex, it's Hessian is positive definite, thus we would only require $\Sigma^{(1)}-\Sigma^{(0)}$ to be PSD as well.

Corollary 2.3. If F is convex and $\Sigma^{(1)}-\Sigma^{(0)}$ is $P S D$, then $f(1) \geq f(0)$.
Finally, as a most restrictive condition of all, we can ensure that entry wise, the multiplication of $\nabla^{2} F$ and $\Sigma^{(1)}-\Sigma^{(0)}$ is positive

Corollary 2.4. If

$$
\begin{cases}\partial_{i} \partial_{j} F(x) \geq 0 & \Sigma_{i, j}^{(1)} \geq \Sigma_{i, j}^{(0)} \\ \partial_{i} \partial_{j} F(x) \leq 0 & \Sigma_{i, j}^{(1)}<\Sigma_{i, j}^{(0)}\end{cases}
$$

for all x, then $f(1) \geq f(0)$.

3 Application of Gaussian Interpolation to Maximum Value Problem

Our goal is to study the function

$$
F(g)=\max _{x \in\left\{ \pm \frac{1}{\sqrt{N}}\right\}} g_{x}
$$

but instead we study the differentiable soft max function and take $\beta \rightarrow \infty$,

$$
F_{\beta}(g)=\frac{1}{\beta} \log \left(\sum_{x} e^{\beta g_{x}}\right)
$$

called the "Free Energy."

$$
\partial_{i} F_{\beta}(g)=\frac{e^{\beta g_{i}}}{\sum_{j} e^{\beta g_{j}}}
$$

denote the value $p_{i}(g)=\frac{e^{\beta g_{i}}}{\sum_{j} e^{\beta g_{j}}}$. Note p as a vector is positive and sums to one, can be thought of as a probability density or weighting over values i. Second derivative is then

$$
\partial_{i} \partial_{j} F_{\beta}(g)= \begin{cases}p_{i}(g)-p_{i}(g)^{2} & i=j \\ -p_{i}(g) p_{j}(g) & i \neq j\end{cases}
$$

since the $p_{i}(x)$ are all positive and less than 1 , we have that $p_{i}(g)-p_{i}(g)^{2} \geq 0$ and $-p_{i}(g) p_{j}(g) \leq 0$. Thus, by element wise corollary 2.4 , we want a matrix $\Sigma^{(1)}$ which is larger than $\Sigma^{(0)}$ on all diagonal entries, and smaller on all off diagonal entries.

Lemma 3.1 (Weak Sudakov-Fernique Inequality). If $\Sigma_{i, i}^{(1)} \geq \Sigma_{i, i}^{(0)}, \Sigma_{i, j}^{(1)} \leq \Sigma_{i, j}^{(0)} i \neq j$ then

$$
E_{\Sigma^{(0)}}\left[\max _{x} g_{x}\right] \leq E_{\Sigma^{(1)}}\left[\max _{x} g_{x}\right]
$$

For example, consider a rank 1 matrix $\Sigma=11^{T}$. By above result, max value under this covariance is less than max value under identity covariance $\Sigma=I_{M \times M}$. Furthermore, expected value is even larger for matrix with diagonal entries 1 and non-diagonal entries constant $-\frac{1}{M-1}$. Thus weak Sudakov inequality gives a convenient way to compare expected max values simply by properties of covariance matrix entries.

4 Preview of Next Class

We will cover the Strong Sudakov Fernique inequality, which covers the covariance matrices defined by

$$
\begin{aligned}
\Sigma_{x y}^{(0)} & =\frac{2}{N}\langle x, y\rangle^{2} \\
\Sigma_{x y}^{(1)} & =\frac{4}{N}\langle x, y\rangle
\end{aligned}
$$

turns out $\Sigma^{(1)}$ above is covariance matrix of Gaussian process

$$
G_{x}^{(1)}=\frac{2}{\sqrt{n}}\langle g, x\rangle
$$

under these results

$$
\begin{aligned}
E\left(\frac{M(W)}{N}\right) \leq E\left(\max _{x \in\left\{ \pm \frac{1}{\sqrt{N}}\right\}}\langle g, x\rangle\right] & =\frac{2}{N} E\left[\|g\|_{1}\right] \\
& =2 E_{g \sim N(0,1)}[|g|] \\
& =2 \sqrt{\frac{2}{\pi}}
\end{aligned}
$$

which gives same upper bound provided by the replica-symmetric solution of Sherrington and Kirkpatrick,

$$
2 P^{*} \leq 2 \sqrt{\frac{2}{\pi}}
$$

but as an upper bound and with a more rigorous formulation.

