CPSC 664, Spring 2023 Scribe: Curtis McDonald
April 11, 2023 Lecturer: Tim Kunisky

Lecture 21: Rigorous Analysis of SK Model

1 Proof Ideas for SK Model

More about Parisi Formula
Overlap Density

Last class, we discussed the Parisi formula for analyzing the limit of the free energy as n — 0.
We saw this unusually “flipping” of the order of indexes m; to now be between 0 and 1. Here
we review the conclusions:

Recall the block replica symmetry breaking ansatz matrix Q* € R™*" with parameters

n>my>--- ,my>1and ayg <a; <a, <---1. The entry a; appears n(m; —m;iq) times,
thus the proportion of the matrix which is entry a; is % As n — 0, this approaches

mji1 —my, i.e. the “probability” of drawing a; from the matrix approaches m;.; —m;.

Thus, consider n =0 =mg < m; <---,<myy; =1 and define the step function
a:0,1] —[0,1]
k41
T Z {m;_1 <z <mj}la,
j=1

that is a(z) is constant value a; on interval [m;_q,m;).



Consider this as the cumulative distribution function (CDF) of the overlap distribution
p which is a probability measure over the interval [0, 1] defined by

(B, A]) = a (B) —a”'(4)

As the number of replica symmetry breaking terms k& — oo, the step function approaches
a continuous CDF function which defines the overlapp density p via this CDF.

Connections to Heat Formula

In the Parisi formula, we have second derivative terms aa_; appearing from the expression
Eqn@©1)[f(g + h)]. This is a consequence of the heat equation.

The heat equation tells us the solution of the PDE

0 1 02

—u(t,h) = ——=u(t,h 1
Coult ) = 52t ) 1)
with initial condition u(0,h) = f(h). Le., the time derivative of u is equal to half the second
derivative in space, with initial condition at time 0. The solution to the heat equation is

u(t,h) = Egunonlf(g + h)] (2)
thus by the heat equation,
0 0?
EEgNN(O,t) [flg+h)] = %ngw(o,t) [f(g+h)]

Talagrand Proof Ideas

Consider # € {£—}" (so hyper cube normalized to be unit vectors) and we are given a
random matrix W. For each entry z in unit hypercube, we have value z7Wz. Put these
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together in a vector G° e R2"

J}{Wﬁl
rEWa,
GO =

I Wagn
can also think of G2 being defined by the choice of W, thus is a mapping from RY*N — RV,

maps a matrix to a vector. When we write G2, Gg we refer to single entries of the vector G
at values x and y. We note a few properties of the mean and covariance of the vector G,

EW[GE] =0
Ew|G3Gy) = Ewlz" Wy Wy
(Zx2WH +2) Wi, afg> (nywu +22W”yzy]>
7>t 7>
2 5 o 4
=N sz yi + N Zxﬂjyz‘yj
=1 7>t
2
= N<$7y>2

The quantity we are interested in studying is the expected maximum of %xTWx over the
original hypercube, which is equal to

B[ MOV)] = Bu|_max 2 (3)
TE€ if

that is, the expected maximum entry of the G° vector. We will provide an upper bound on
this quantity.

2 Gaussian Interpolation

Gaussian interpolation is a method to bound the expected value of a function over a Gaussian
by comparing the value to an expectation over a simpler Gaussian which we can compute.
For some function F : R — R, we want to study E,.nos0)[F(g)] that is the expected
value of F' over a Gaussian With covariance Y°. We construct a continuous evolution from
covariance matrix X(©) — %) by 31 [0,1] — RYM. Define the function of time

f(t) = Egunox) [ F(9)]

by fundamental theorem of calculus,
/ I

f(t) = 815 Eyno,s0)[F(9)]



if we can show this derivative f'(¢) > 0 for all ¢, then f(1) > f(0) and solving f(1) provides
an upper bound on the quantity f(0) we want to study. Pick a matrix A(t) such that the
covariance matrix is the square of this matrix X(¢) = A(¢)A(t). Then

f(t) = Egunio.n[F(A(t)g)]
all t dependence is inside F' function and we can take derivatives more easily.

F(8) = 2 Byxion [F(A®D))]

soxton g F(A()g)

= E,[(VF(A(t)g), A'(t)g)]

= By[Y_ OiF(A()g) 3 A'(1)i;0]

- ZEg[Z O F (A(t)g)A'(t):9]

= D EY Y 00F (A1) AN, A (1),,] (Integration by parts)
j i=1 k=1

=D B[00 F(A(£)g) (A(t)A'(1)) 4]
i k

— B,[(V2F(A(t)g), A(t)A'(1))]

that is, expected sum of entry wise multiplication of hessian of F' and A(t)A'(t). We can
“symmetrize” the inner product, for any matrix H

ABA () + A)TALT
2

(H, A(t)A'(t)) = (H, )

thus define the symmetrized matrix
Y(t) =A@ A () + AT AT
which yields the following lemma.

Lemma 2.1.

F'(t) = 5(X'(t), Egun(o.n[V2F(9)))

Consequences of Lemma

We want to deduce situations where the above inner product value is positive, thus f(1)
provides an upper bound on f(0). Say we use Gaussian interpolation

2(t) = (1 -2 4+ 2
() =x® - xnO

constant time change for any ¢. Thus as a corollary
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Corollary 2.2. If (V2F(z), 2" — £O) >0V z, then we have that f(0) < f(1).

Note that we only want the expected value to be positive, so ensuring the inner product
is positive at all locations is a more restrictive condition then we need but implies the
expectation is positive. Furthermore, if F'(z) is convex, it’s Hessian is positive definite, thus
we would only require ¥ — () to be PSD as well.

Corollary 2.3. If F is convez and XV — X 4s PSD, then f(1) > f(0).

Finally, as a most restrictive condition of all, we can ensure that entry wise, the multi-
plication of V2F and (1) — £() is positive

Corollary 2.4. If

for all x, then f(1) > f(0).

3 Application of Gaussian Interpolation to Maximum
Value Problem

Our goal is to study the function

F(g) = RSN
TEEYN

but instead we study the differentiable soft max function and take g — oo,
1
Filg) = 3 log(> ~ e)

called the “Free Energy.”

iFs(g) = ]
denote the value p;(g) = Zeﬂ:;gj. Note p as a vector is positive and sums to one, can be
J

thought of as a probability density or weighting over values 7. Second derivative is then

3. _)pilg) —pilg) i=
20F5(0) {—pi(gm(g) i # ]

2

since the p;(z) are all positive and less than 1, we have that p;(g) — pi(g9)> > 0 and
—pi(g)pj(g) < 0. Thus, by element wise corollary 2.4, we want a matrix () which is
larger than X on all diagonal entries, and smaller on all off diagonal entries.
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Lemma 3.1 (Weak Sudakov-Fernique Inequality). If EZ(}Z-) > (0 25}} < 22(0) i # j then

/L?Z ’ 7‘7

Ego[maxg,] < Ega)[max g,]

For example, consider a rank 1 matrix ¥ = 117. By above result, max value under
this covariance is less than max value under identity covariance > = Ij;«ys. Furthermore,
expected value is even larger for matrix with diagonal entries 1 and non-diagonal entries
constant —ﬁ. Thus weak Sudakov inequality gives a convenient way to compare expected
max values simply by properties of covariance matrix entries.

4 Preview of Next Class

We will cover the Strong Sudakov Fernique inequality, which covers the covariance matrices

defined by

2

Ea(c(;/) - N<'r7y>2
4

29(02 = N(mvy>

turns out (M above is covariance matrix of Gaussian process

2

Gél) = %(gam>

under these results

BT < B max (1] = Bl

=2Eg.nollgl]

2
2
s

which gives same upper bound provided by the replica-symmetric solution of Sherrington

and Kirkpatrick,
2P < 2\/2
s

but as an upper bound and with a more rigorous formulation.
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