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Lecture 20: Replica Symmetry Breaking II

1 Introduction

This lecture covers the the second half of the calculations of Giorgio Parisi’s famous formula
derived by use of replica symmetry breaking.

Proposition 1.1 (MGF of a Gaussian).

Eg∼N (0,1) exp(ga) = exp(a2/2) (1)

2 The RSB ansatz: Frobenius norm of Q

Recall that we left off with, using the replica trick,

EZ(β)n ≈ exp
(
N sup

Q
inf
Λ

[
n log 2 + β2 ‖Q‖2

F + log Ey∼Unif({1,−1}n) exp(yTΛy − 〈Λ, Q〉]
)

(2)

By taking matrix derivatives, one can solve for the minimizing Λ in the expression as
2β2Q.

EZ(β)n ≈ exp
(
N sup

Q

[
n log 2 + β2 ‖Q‖2

F + n+ log Ey exp(2β2yTQy)
])

(3)

The replica symmetry breaking ansatz has parameters n ≥ m1 ≥ m2 > ...mk ≥ 1. Each
ai is the value of the block between each pair of levels. The idea of Parisi is that for an integer
number of replicas, the entries of the replica matrix Q can take only k positive values.

Qi,j = ai if
[ i

mk

]
6=
[ j
mk

]
and

[ i

mk+1

]
=
[ j

mk+1

]
(4)

We need Q∗ to be positive semidefinite. Physically, this corresponds to stability of the
free energy under infinitesimal perturbations. So, we have a condition on the ai’s to make
this happen. It turns out that Q∗ is PSD if and only if a0 ≤ a1 ≤ · · · ≤ ak ≤ 1.

This block structure of Q∗ allows us to directly calculate the Frobenius norm of Q∗.

‖Q∗‖2
F = n[1 +

k∑
j=0

a2
j(mj −mj+1)] (5)

if we define m0 = n and mk+1 = 1.
Recall that f(β) = limN→∞

1
n
limn→0

1
n
log EZ(β)n. As n→∞, 1

n
‖Q∗‖2

F = 1+
∑k

j=0 a
2
j(mj−

mj+1. Weird physics alert: Also as n → ∞, the chain of inequalities n ≥ m1 ≥ . . . ... ≥ 1
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reverses to m0 ≤ m1 ≤ · · · ≤ mk+1 = n. See the Parisi paper. It has something to do with
the symmetric group of 0 elements.

The sum in (5) can be interpreted as a Riemann sum as the m′is fill the interval; as

k →∞. This sum turns into 1−
∫ 1

0
a(x)2dx.

So we have

1

n
‖Q‖2

F = 1−
∫ 1

0

a(x)2dx (6)

In the replica symmetric version, we ended up with an optimization over a. Now, for
each x, we optimize over a(x). So we write the log Ey exp(2β2yTQy) term in terms of a(x).
In the literature, this function a (often seen as q), is called the Parisi order parameter.

3 RSB Ansatz: Entropy Term

Now we deal with the entropy term in (2).

Proposition 3.1.

Ey∼Unif({±1}n exp
(1

2
yTΣy + 〈µ, y〉

)
= Eg∼N (µ,Σ)

∏
i

cosh(gi) (7)

Proof. Use the spectral decomposition of Σ, which we take to be positive definite.

Σ = V ΛV T =
n∑
i=1

λiviv
T
i (8)

Then the LHS becomes

Ey∼Unif({±1}n exp
(1

2
yTΣy + 〈µ, y〉

)
= Ey exp

(1

2

∑
λi〈vi, y〉2 + 〈µ, y〉

)
(9)

Now we use the proposition, the MGF of a Gaussian, because we can write the term in
the exponential as

∑
j yj(µj +

∑
i vi
√
λiyi). So we can write this as

Egi∼N(0,1) exp(
∑
j

yj(µj +
∑
i

vi
√
λigi)) = Eg∼N(µ,Σ) cosh(µj + (V

√
Dg)j) (10)

This yields the following recursion

Ey exp(
1

2
yTQ(k−1)y) = Eg∼N(0,1)

∏
i

cosh(gi) (11)

Let 1(j) be the matrix of j2 square blocks that is one on the diagonal.
Q(k) = a01(1) + (a1 − a0)1(3) + ...
Starting from the first step RSB, we have, letting g = h ∗ 1 + g1,
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Ey exp(2β2yTQy) = Eh∼N(0,a0)Eg∼N(0,1(3)

n∏
i=1

cosh(h+gi) = Eh∼N(0,a0)[Ey exp(
1

2
yTQ(0)y+h1Ty)](n/m1)

(12)
This procedure can be iterated. It is closely related to the heat equation, which comes

up in Parisi’s formula.
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