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Lecture 17: Introduction to Sherrington-Kirkpatrick (SK) model

1 Problem Definition

This is a very important model in statistical physics and we will motivate this problem with
a pure combinatorial problem, the max cut problem.

We’ve seen the following in Homework 1

W ∼ GOE(N,
1

N
)

||W || = O(1) w.h.p., then we define the following optimization problem

M(W ) = max
x∈{±1}N

xTWx

||x|| =
√
N w.h.p., this is like the eigenvalue problem but over the hypercube, which

changes the problem drastically and this constraint makes it harder but more interesting.

2 Motivation

This problem is motivated by a combinatorial problem, the MaxCut problem, specified by
a graph G = (V,E). We devide the set V into two sets and maximize the number of edges
between these two sets. This is a well-known NP-complete problem.

Claim 1. The normalized MaxCut is a special case of our optimization problem M .

Proof. Given aG, we have two matrices: A = AG the adjacency matrix and a diagonal matrix
D = DG where Dxx = degG(x). Then we can build the Laplacian matrix L = LG = D − A.
If we look at the quadratic form:

vTLv =
∑
x

degG(x)v2x − 2
∑

(x,y)∈E

vxvy

=
∑

(x,y)∈E

(v2x + v2y)− 2
∑

(x,y)∈E

vxvy

=
∑

(x,y)∈E

(vx − vy)2
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which can be regarded as the “gradient” of v: ||∇v||2. If we plug in x in the hypercube
so that x ∈ {±1}V corresponds to a division of the vertices set U ⊂ V , then xTLx =
4× {# of edges cut by U}. So MaxCut(G) = M(1

4
L).

Claim 2. Plugging in these “smooth” Gaussian matrices W corresponds to meaningful Max-
Cut problem.

Let’s look at MaxCut for random graphs.
For d ≥ 3, G ∼ Unif({d-regular graph on N vertices}).

Remark 2.1. One can utilize configuration models to efficiently sample from this distribu-
tion.

Since d is independent from N , G is a sparse graph: |E| = dN
2

= O(N). One could ask
what is the typical MaxCut value for this graph.

Since it’s d− regular, D = dI so xTLx = dN − xTAx and:

MaxCut(G) =

[
1

4
dN − 1

4
min
x
xTAx

]
Normalized MaxCut(G) =

[
1

2
− 1

2dN
min
x
xTAx

]
For simplicity we will use MaxCut to denote Normalized MaxCut.

3 Bounds for MaxCut

3.1 Upper Bound

We can upper bound it with

MaxCut(G) ≤
[

1

2
− 1

2dN
λmin(A)||x||2

]
=

[
1

2
− 1

2dN
λmin(A)N

]
=

[
1

2
+
||λmin(A)||

2d

]
Let’s denote the eigenvalues of A as: λ1 ≥ λ2 ≥ · · · ≥ λN , then λ1 = d with eigenvector

being all 1’s, which is evidence that the results about the empirical spectral distribution
from the free probability tool do not describe the outliers of the eigenvalues. (d > 2

√
d− 1)

Theorem 3.1. W.h.p., −2
√
d− 1− oN→∞(1) ≤ λN ≤ λ1 ≤ 2

√
d− 1 + oN→∞(1)

And by the above theorem, one can show that w.h.p.:

MaxCut(G) ≤ 1

2
+

√
d− 1

d
+ o(1)
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3.2 Lower Bound

We can also lower bound this by analyzing some “local algorithms” that given G, output a
cut. W.h.p.:

MaxCut(G) ≥ 1

2
+

c√
d

.

3.3 Problems to Study

• Q1: For small constants d (i.e. d = 3), find limN EMaxCut(G)

• Q2: For large d, find the threshold.

We focus on the second problem. Specifically, we are interested in showing the existence
of such constant c, so that limN EMaxCut(G) = 1

2
+ c√

d
+ o( 1√

d
) as d→∞. And if it exists,

we want to find out what it is.

Remark 3.2. Same for sparse ErdosRenyi graphs (edges are present with probability d
N

).
The same argument does not apply but the same conclusion can be drawn.

Remark 3.3. Same for minimum bisection (i.e. ||U || = N
2

) and maximum bisection problem.
In simulations, it is close to MaxCut.

Conjecture 3.4. limN→∞MaxCut(G)− 1
2

= 1
2
− limN→∞MinBis(G) even for fixed d.

4 Find Constant c

Recall that we have:

1

2
− 1

2dN
min
x
xTAx = MaxCut(G) =

1

2
+

c√
d

+ o(
1√
d

)

It’s equivalent to that w.h.p.:

1

2
√
dN

min
x
xTAx = −c+ o(1)

⇔ 1

2N
min
x
xT

A√
d
x = −c+ o(1)

Recall that “free CLT” says that e.s.d. of A√
d

is the semi-circle, which is the e.s.d. of

GOE(N, 1
N

), so heuristically
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1

2N
min
x
xT

A√
d
x ≈ 1

2N
min
x
xTWx

= − 1

2N
max
x
xT (−W )x

= − 1

2N
max
x
xTWx

Heuristic guess of the constant:

c = lim
N→∞

1

2N
EW∼GOE(N, 1

N
)M(W )

, which is the ground state of this SK model.

Theorem 4.1. The Parisi number P ∗ (i.e. the above c value) exists and has some compli-
cated formula. The number is 0.7632.

Theorem 4.2. limN→∞ EMaxCut(G) = 1
2

+ P ∗
√
d

+ o( 1√
d
)

5 Replica Method for P ∗

In physics, the SK Hamiltonian H(x) = xTWx. Then we can define:

• µβ(x) = 1
Z(β)

eβH(x), where Z(β) =
∑

x e
βH(x)

• Free energy: F (β) = log(Z(β)); Free energy density: f(β) = limN→∞
1
N
F (β)

• Ground state: limβ→∞
1
β
f(β)

Note that EF (β) = E logZ(β) = limn→0
EZ(β)n

n

while EZ(β)n =
∑

x1,··· ,xn EW eβ(〈W,x1x
T
1 +···+xnxTn 〉).

The exponent could be written as the Frobenius norm of XXT and then what we did
previously is to transform this to the Frobenius norm of XTX, which is a small matrix. And
in the end one could get some results by making some naive assumption that the matrix has
some certain number on the diagonal and some other number on the off-diagonal entries.
But one would find out that this result would imply some “negative entropy”, which could
not happen. We will see in the next lectures that some replica-symmetry-breaking could be
used to repair this technique to calculate the P ∗ value.
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