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Lecture 12: Free Probability II

1 Notation and Moment Assumptions

Throughout this lecture we will assume that, for each k

1

N
E[Tr(X(N)k)]→ mk = E

x∼µ
[xk], (1)

1

N
E[Tr(Y (N)k)]→ nk = E

y∼ν
[yk], (2)

that is, that the empirical spectral distributions of X(N) and Y (N) converge in moments to
probability distributions µ and ν, respectively, on R.

2 Asymptotic Freeness and its Consequences

We give an alternative definition of asymptotic freeness, simpler than the one from the
previous lecture: it suffices to show that, for all a1, . . . , a`, b1, . . . , b` ∈ N, we have

1

N
E[Tr((X(N)a1 −ma1I)(Y (N)b1 − nb1I) . . . (X(N)a` −ma`I)(Y (N)b` − nb`I)]→ 0. (3)

In the previous definition, we allowed the X(N)a to be arbitrary polynomials instead of just
monomials (and likewise the Y (N)b), but it is not difficult to show that this special class of
polynomials suffices.

Consider expanding this condition. We will get a main term of 1
N

ETr(X(N)a1 · · ·Y (N)b` ),
and all further terms will be either the constant ma1 · · ·nb` 1

N
Tr(I) = ma1 · · ·nb` , or traces of

lower-degree monomials in X(N) and Y (N). Therefore, we find a recursion for these traces,
which leads to a formula like that alluded to in the last lecture:

1

N
E[Tr(X(N) + Y (N))k]→ ck(m1, . . . ,mk, . . . , n1, . . . , nk), (4)

for some polynomial ck.
Moreover, one can show that there is some probability distribution µ� ν for which these

polynomials satisfy
ck(m1, . . . ,mk, . . . , n1, . . . , nk) = E

z∼µ�ν
[zk]. (5)

This is called the additive free convolution of µ and ν. Thus, in words, the empirical spectral
distribution of X(N) + Y (N) converges in moments to the additive free convolution of the
individual limiting empirical spectral distributions of X(N) and Y (N).
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3 Additive Free Convolution vs. Classical Convolution

One can compute the additive free convolution by directly working with the ck polynomials,
but an easier approach uses the Stieltjes transform and the related R-transform.

Definition 3.1 (Stieltjes transform). For a probability distribution µ,

Sµ(z) = E
X∼µ

[
1

X − z

]
=

∫
1

x− z
dµ(x). (6)

Definition 3.2 (R-transform). For a probability distribution µ,

Rµ(z) = S−1µ (−z)− 1

z
. (7)

The following is the reason why the R-transform is useful for free additive convolution
calculations.

Theorem 3.3. For probability distributions µ and ν,

Rµ�ν = Rµ(z) +Rν(z). (8)

When considering additive free convolution, it is worth bearing scalar convolution in

mind. In the scalar version, the convolution µ ∗ ν is the law of X +Y when we draw X
iid∼ µ,

Y
iid∼ µ. This is analogous to the effect of additive free convolution in the matrix case.
Convolution in the scalar case behaves nicely under the Laplace transform, which can

also be though of as an exponential moment generating function or a characteristic function
evaluated at a complex input. That is, if we define

φµ(z) = E
x∼µ

[ezx] =

∫
exzdµ(x), (9)

then we have
φµ∗ν(z) = φµ(z)φν(z). (10)

We can also achieve an additive expression by taking logarithms of both sides. This
gives a function known as the cumulant generating function. Cumulants are additive under
convolution:

ψµ(z) = log φµ(z), (11)

ψµ∗ν(z) = ψµ(z) + ψν(z). (12)

For this reason, when we view the R-transform as an ordinary generating function, its
coefficients are called free cumulants, polynomials of the moments of a distribution which
are additive under additive free convolution.
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4 Rederiving the Semicircle Law

Armed with our understanding of additive free convolution, we return to the result we have
seen before that matrices from the Gaussian orthogonal ensemble have as their limiting
empirical spectral distribution the semicircle distribution.

We begin, as before, by splitting our GOE matrix into the normalized sum of two i.i.d.
GOE matrices:

W
(d)
=
W1 +W2√

2
(13)

If we had that W1 and W2 were asymptotically free, then we could derive the semicircle
distribution via additive free convolution, as follows. Given that the empirical spectral
distributions of the left and right hand sides must be equal, if ρ were the limiting empirical
spectral distribution, we would we have that

ρ =
ρ√
2
�

ρ√
2
. (14)

Here, cµ is the distribution of cX when X ∼ µ. Our first task is to find an expression for the
R-transform of ρ√

2
in terms of the R-transform of ρ. In effect, we have to understand how

the R-transform scales for constant scaling of its argument. We start from the definition of
the Stieltjes transform:

Scµ(z) = E
x∼µc

[
1

cx− z

]
=

1

z
Sµ

(
z

c

)
(15)

Taking inverses,

S−1cµ (z) = cS−1µ (cz) =⇒ R−1cµ (z) = cR−1µ (cz). (16)

Using the above and Theorem 2.3, we get that

Rρ(z) = 2R ρ√
2
(s)

= 2 · 1√
2
Rρ

(
z√
2

)
=
√

2Rρ

(
z√
2

)
(17)

The only nice functions that satisfy this condition are Rρ(z) = az for some a ∈ R.
Calculating the first two moments of the GOE, you may check that we must take a = 1, so
that Rρ(z) = z. It only remains to recover the semicircle distribution from this R-transform.
We begin by substituting our condition on Rρ(z) into the definition of the R-transform.

S−1ρ (z) = z − 1

z
. (18)

Inverting this,

Sρ(y) =
(
z solving z2 + zy + 1 = 0

)
=
−1±

√
y2 − 4

2
. (19)
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Choosing the correct solution by comparing with low-order moments, we see that this is
indeed the Stieltjes transform of the semicircle distribution.

So, as for the scalar Gaussian distribution, the “divisibility” property of the GOE deter-
mines its limiting empirical spectral distribution. Thus the semicircle distribution for matrix
random variables plays a somewhat analogous role to the normal distribution in the scalar
case.

It is worth noting that we can find analogous free distributions for a number of familiar
distributions.

Example 4.1 (“Free Poisson” distribution). The limitof

Ber

(
λ

n

)
� · · ·�Ber

(
λ

n

)
︸ ︷︷ ︸

n times

(20)

gives the Marcenko-Pastur distribution, which arises as the limiting empirical spectral dis-

tribution of a Wishart matrix 1
n
GGT , G ∈ Rmxn, where Gij

iid∼ N(0, 1) and m
n
→ λ.

5 Condition for Asymptotic Freeness

Above we implicitly used the following, which may be proved “by hand” with some tedious
moment calculations.

Theorem 5.1. If W
(N)
1 and W

(N)
2 are i.i.d. normalized matrices drawn from the GOE, then

W
(N)
1 and W

(N)
2 are asymptotically free.

However, this is a very restricted class of matrices. We ask ourselves whether there are
weaker sufficient conditions for asymptotic freeness. A natural place to start would be to
ask whether independence is sufficient. The answer turns out to be no, which we can prove
neatly by counterexample.

Consider the diagonal i.i.d. matrices X(N) and Y (N) such that X
(N)
ii , X

(N)
ii ∼ Unif({±1}).

Asymptotic freeness requires that

1

N
E[Tr(X(n)Y (n)X(n)Y (n))]→ 0. (21)

However, due to the commutative property of diagonal matrices, we can write,

1

N
E[Tr(X(n)Y (n)X(n)Y (n))] =

1

N
E[Tr (X(N)2Y (N)2)︸ ︷︷ ︸

I

]

= 1 6= 0 (22)

It turns out that, in general, asymptotic freeness between two matrices requires strong
non-commutativity or eigenvector decorrelation.

Theorem 5.2 (Voiculescu). If X(N) and Y (N) are independent and X(N) is rotationally
invariant, then X(N) and Y (N) are asymptotically free.
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This ensures “as much eigenvector decorrelation as possible,” since the eigenvectors of
X(N) are a uniformly random orthonormal basis. We note also that for independence it
suffices to take Y (N) a deterministic sequence of matrices whose empirical spectral distri-
bution converges. Examples of rotationally invariant random matrices X(N) include: GOE
matrices, Wishart matrices,, projections to uniformly random subspaces, QX̃(N)QT for X̃(N)

arbitrary and Q ∼ Unif(O(N)), where O(N) is the set of N ×N orthogonal matrices.

6 Multiplicative Free Convolution

We briefly introduce the related concept of multiplicative free convolution, denoted �. If
we have X(N), Y (N) asymptotically free and Y (N) � 0, then we can compute the limiting
empirical spectral distribution of matrices of the form,

Y (N)
1
2X(N)Y (N)

1
2 =: Z(N). (23)

This is because
TrZ(N)k = Tr((X(N)Y (N))k) (24)

after applying the cyclic property of trace, which returns us to the setting of traces of
polynomials that asymptotic freeness helps analyze.

In this case, the empirical spectral distribution of Z(N) converges to a measure µ�ν. We
do not give a thorough account of multiplicative free convolution, but let us give a motivating
example.

Example 6.1. Consider some rotationally invariant X(N) and diagonal Y (N) such that Yii
iid∼

Ber(α). Given that Bernoulli random variables take only values 0 and 1, our matrix has
a random set of ones and zeros in the diagonal and all-zero off-diagonal elements, and

Y (N)
1
2 = Y (N). Then, we can think of the matrix Y (N)

1
2X(N)Y (N)

1
2 = Y (N)X(N)Y (N) = Z(N)

as being a random principal submatrix of X(N). Thus multiplicative free convolution with
Ber(α) can help us understand how sub-sampling affects the spectrum of a matrix; this has
some useful application in signal processing and graph theory.
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