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LECTURE 11: Free Probability

From the Kac-Rice Formula, our objective is to comprehend the eigenvalues of W +D,
where W is the GOE matrix and D denotes the random diagonal matrix. In our previous
lecture, we derived the semicircle law for the GOE matrix W and the eigenvalues of D are
also clear. In the following, we will present a general method to integrate these findings and
elucidate the eigenvalues of the sum of two random matrices.

1 CLT via Renormalization

Before delving into the method, we present an analogous way to understanding the semicircle
law through a renormalization approach. Initially, we demonstrate how this approach can
be used to prove the Central Limit Theorem.

Theorem 1.1 (Central Limit Theorem). Consider a sequence of i.i.d. samples {A1, A2, · · · , An}
such that E [Ai] = 0 and Var [Ai] = 1. Define the random variable Sn as follows:

Sn
def
=

A1 + A2 + · · ·+ An√
n

.

Then, in distribution, Sn converges to a standard guassian distribution, i.e.,

Sn
(d)→ N(0, 1).

In Lecture 7, we established this by computing the moments as n approaches infinity and
subsequently solving the moment problem to obtain the limiting distribution. However, in
this instance, we will demonstrate the proof using the renormalization approach. We won’t
give a strict proof here but also provide some high level ideas.

Define M as the set of all probability distributions over R. Let f represent a mapping
from M to itself. For any given distribution µ, f(µ) is defined as the law of X1+X2√

2
, where

X1 and X2 are i.i.d. random variables drawn from µ.
We first notice that

f(law of Sn)
(d)
=

Sn + S ′
n√

2

(d)
=

!
A1 + A2 + · · ·+ An√

n
+

A′
1 + A′

2 + · · ·+ A′
n√

n

"
/
√
2

(d)
=

A1 + A2 + · · ·+ A2n√
2n

(d)
= law of S2n

(1)
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This implies that as n approaches infinity, the law of Sn always goes along the mapping
f . Additionally, observe that N(0, 1) serves as a fixed point for the mapping f . This is
because that

X1 +X2√
2

(d)
= N(0, 1) when X1, X2

i.i.d.∼ N(0, 1)

Consequently, the Central Limit Theorem can be interpreted as a fixed-point theorem for
the mapping f . Starting from a sufficiently well-behaved distribution, iterating the mapping
f will always converge to the fixed point. However, one might question whether N(0, 1) is
the sole fixed point for this mapping. We will now demonstrate that for any fixed-point
distribution µ, µ could be recovered as a Gaussian distribution.

Given any fixed point distribution µ, define mk as the k-th moment of µ, i.e.,

mk
def
= E

X∼µ

#
Xk

$
. (2)

As we know that µ is a fixed point distribution of f , this implies that

X
(d)
=

X1 +X2√
2

where X, X1 and X2 are i.i.d. samples from µ. Thus, we could see that

mk = E
X∼µ

#
Xk

$

= E
X1,X2∼µ

%!
X1 +X2√

2

"k
&

=
1

2k/2

k'

j=0

!
k

j

"
mjmk−j.

Rephrasing the equation above, we get the following recursion:

mk =
1

2k/2 − 2

k−1'

j=1

mjmk−j. ∀k ∕= 2

By solving this recursion, we then recover that N(0, 1) is the only fixed point given the
fact that the variance is only 1.

We can also recover the normal distribution by characteristic function. For any fixed-
point distribution u,

Φu(t) = E
X∼u

exp(itX)

= E
X1,X2∼u

exp
(
it (X1 +X2) /

√
2
)

= Φu

!√
t√
2

"2

.

Solving this equation, we could also show that the Gaussian distribution is the only valid
distribution.
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2 Adaption to Random Matrices

We will now adapt the approaches above to the context of random matrices. Let M represent
the set of probability distributions over N × N symmetric matrices, while the function f
remains unchanged.

Similarly, we could see that GOE matrix is still a fixed point for the mapping f , i.e.

f(GOE)
(d)
= GOE

Our goal is to learn limn→∞
1
N
Tr

*
W k

+
from the equation above where

Wij = Wij ∼ N(0, 1 + δij),

and ,W = 1√
N
W is a normalization version of the GOE matrix. Using the same approach,

define mk as
mk

def
= E

W∼GOE
Tr(W k).

We could also get a similar recursion:

mk = E
W∼GOE

Tr
*
W k

+

= E
W1,W2∼GOE

Tr

!
W1 +W2√

2

"k

=
1

2k/2

'

a1+a2+···an=k
ai≥1

Tr (W a1
1 W a2

2 W a3
1 W a4

2 · · · )

(3)

However, W1 andW2 do not commute with each other, so we cannot do similar operations
as the scaler case. We first have a look at a simpler case that we can handle:

Example 2.1. E
#
TrW a

1W
b
2

$
. This is quite like the scaler case. We could see that

E
#
TrW a

1W
b
2

$
= Tr

*
(EW a

1 )
*
EW b

2

++

≈ 1

N
(ETrW a

1 )
*
ETrW b

2

+

≈ Ca/2Cb/2N
k/2+1.

where The last step is based on the path counting argument from our previous lecture.

Now let us try to check the case when k = 4. Expanding (3), we could see that

2N3 =
1

4

- *
ETrW 4

1 + ETrW 4
2

+

+
*
ETrW 2

1W
2
2 + ETrW 2

2W
2
1 + ETrW1W

2
2W1 + ETrW2W

2
1W2

+

+ (ETrW1W2W1W2 + ETrW2W1W2W1)

+ (terms with odd number of either Wi) .
.
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We could observe that ETrW 4
1 = ETrW 4

2 ≈ 2N3, and ETrW 2
1W

2
2 = ETrW 2

2W
2
1 =

ETrW1W
2
2W1 = ETrW2W

2
1W2 ≈ N3. It is also clear that the contributions by terms

with odd number of either Wi is negligible. This suggests that the contribution from

ETrW1W2W1W2 and ETrW1W2W1W2 should be o(N3). Actually this can be proved by
counting colored walks. Let us consider a colored version of the closed walk we encountered
last time, where the edges from W1 are blue and the edges from W2 are red. As we proved
last time, to get a non-zero contribution, every edge must be traversed an even time. This
implies that the only contributions are from closed walks within two vertices, which are only
O(n2).

Now we consider a hard case where k = 8. In this case, there will be some terms like

ETr (W 2
1W

2
2W

2
1W

2
2 ). Again let us consider counting colored walks. We could see that there

could be a valid closed walk within five vertices, which is in the following shape:

Figure 1: A valid closed walk for the term

These observations imply that the contribution of ETr (W 2
1W

2
2W

2
1W

2
2 ) isO(N5) = O(N8/2+

1), which is not negligible when considering the case where k = 8. As a result, this raises the

question of when we can obtain limN→∞
1
N ETr

*
X(N) + Y (N)

+k
from limN→∞

1
N ETr

*
X(N)

+k

and limN→∞
1
N ETr

*
Y (N)

+k
. In the scalar case, as discussed in Section 1, independence be-

tween X(N) and Y (N) is sufficient. However, in the matrix case, mere independence is not
adequate to derive this result, as demonstrated above. Consequently, we introduce the con-
cept of asymptotic freeness in the following section, which will prove beneficial in addressing
this issue.

3 Asymptotic Freeness

We now introduce the definition of asymptotic freeness.

Definition 3.1. For any two sequences of two matrices
/
X(n)

0
and

/
Y (n)

0
, they are asymp-

totically free if and only if for any bunch of polynomials {p1, · · · , pl} and {q1, · · · , ql} such
that

1

N
Tr

#
pi
*
X(N)

+$
→ 0 and

1

N
Tr

#
qi
*
Y (N)

+$
→ 0 ∀i ∈ [l],

it holds that

1

N
E
#
Tr

*
p1

*
X(N)

+
q1
*
Y (N)

+
· · · pl

*
X(N)

+
ql
*
Y (N)

++$
→ 0.
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This condition is actually saying that for any term that forms an interleaving of X(N)

and Y (N) where they individually are negligible, the whole term is also negligible.
We could prove that two independent instances drawn from GOE are asymptotically

free. Utilizing this definition, we can approach the problem more systematically. Let us now
examine some examples.

Example 3.2. Let l = 1, p1(t) = ta − Ca/2 and q1(t) = tb − Cb/2.
As we proved before, we could easily see that p1(t) and q1(t) satisfies the conditions in

Definition 3.1. Then, the definition of asymptotic freeness implies that

0 = lim
N→∞

1

N
E
-
Tr

((
,W1

a
− Ca/2I

)(
,W2

b
− Cb/2I

)).

= lim
N→∞

1

N
E
-
Tr ,W1

a,W2

b
− Ca/2Cb/2 − Ca/2Cb/2 + Ca/2Cb/2

.

This gives us the same result as Example 2.1.

Example 3.3. Let l = 2, and p1(t) = p2(t) = q1(t) = q2(t) = t. Again, it is clear that pi(t)
and qi(t) satisfies the conditions of asymptotic freeness. Therefore, it holds that

0 = lim
N→∞

1

N
E
-
Tr

(
,W1

,W2
,W1

,W2

).
,

which recovers the proof that shows that the contribution from ETrW1W2W1W2 is negligible.

Define m̂k as limN→∞
1
N ETr,W k. Just as Example 3.2, we define similar polynomials pi(t)

and qi(t). By asymptotically freeness, we could see that

0 = lim
N→∞

1

N
ETr

((
,W1

a1 − Ca1/2I
)(

,W2

b1 − Cb1/2I
)
· · ·

(
,W1

al − Cal/2I
)
· · ·

)
.

Expanding the equation above, we then get a closed recursion for m̂k.
Finally, we introduce two corollaries that will be useful.

Corollary 3.4. When X(N), Y (N) are asymptotically free, then limN→∞
1
N ETr

*
X(N) + Y (N)

+k

is a function of
1
limN→∞

1
N ETr

*
X(N)

+k
, limN→∞

1
N ETr

*
Y (N)

+k2
.

Corollary 3.5. Suppose the empirical spectral distribution of X(N) converges to some distri-
bution µ and the empirical spectral distribution of Y (N) converges to ν. If X(N) and Y (N) are
asymptotically free, the empirical spectral distribution of X(N) + Y (N) is converges to some
distribution determined by µ and ν, and we call it µ⊞ ν. This is called free convolution and
we will further discuss it in the following lecture.
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