# Lecture 7: Moment Problems

# 1 Problem Statement

This is a very classical topic in probability theory. In general, this asks when knowing the moments of a probability distribution or limits of moments of a sequence of distributions will help us identify the underlying distribution or its limit.

Formally,

1. The simplest version of this kind of question is: for a given  $\{m_k\}_{k\geq 1}$  we want to know the **existence**: if there exists some probability measure  $\mu$  over  $\mathbb{R}$  such that

$$\mathop{\mathbb{E}}_{x \sim \mu} X^k = m_k, \forall k$$

We quickly recall that, in a more analysis notation, we could also write  $\mathbb{E}_{x \sim \mu} X^k$  as  $\int x^k d\mu(x)$ . When  $\mu$  has a density that we denote as p, we could rewrite the integral to  $\int x^k p(x) dx$ .

After asking if there exists such a  $\mu$ , another natural question we would like to answer is **uniqueness:** when such  $\mu$  exists, will it be unique or not?

2. We have seen a more advanced question in the number partitioning lecture: given random variables  $X_n$  and for every fixed k the moment

$$\lim_{n\to\infty} \mathbb{E} X_n^k \to \int x^k d\mu(x)$$

then the question is when we could conclude  $X_n \to \mu$  in some other sense of convergence.

3. At the end of this lecture, we want to discuss the appearances in random matrix theory of convergence in moments.

### 2 Existence and uniqueness

So let's start with the simplest version:

Given the sequence of moments of some  $\mu$ ,  $m_k = \int x^k d\mu(x)$ . We want to know how and when we could recover  $\mu$  from the given information. Part of this question is like an algorithmic question when we give you these numbers, how do we calculate  $\mu$ ? More abstractly, we want to clarify if there exists a  $\mu' \neq \mu$  such that  $m_k = \int x^k d\mu'(x)$ .

To make our life easier, we assume our  $\mu$  has density function p(x); this allows us to compute  $\mu$  by integrating p.

Now we first introduce *characteristic function*.

**Definition 2.1.** Characteristic function  $\Phi(t) \in \mathbb{C}$  is defined as

$$\Phi(t) = \mathop{\mathbb{E}}_{X \sim \mu} e^{itX} = \int_{-\infty}^{\infty} e^{itx} p(x) dx.$$

**Example 2.2.** The characteristic function of the Gaussian law  $\mathcal{N}(\mu, \sigma^2)$  is  $\exp(i\mu t - \frac{1}{2}\sigma^2 t^2)$ . The characteristic function of the exponential law  $\mathsf{Exp}(\lambda)$ , which we saw appear in the number partitioning lecture, is  $\frac{1}{1-\frac{i}{\lambda}t}$ .

**Remark 2.3.** One way to think of this is just like a moment-generating function but evaluated with complex parameters.

**Theorem 2.4.** Given a  $\Phi$  with some nice properties, for instance  $\Phi$  is in  $\mathcal{L}^1$ , we have

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{itx} \Phi(t) dt$$

*Proof.* Notice that

$$RHS = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{it(y-x)} p(y) dy dt.$$

The idea of calculating this integral is to integrate  $e^{it(y-x)}$  as a delta function.

To prove this more formally, we can show the result if p is some Gaussian, and then approximate other p by some linear combination of Gaussian densities. Then we will use that the map  $p \mapsto \Phi$ , and the inversion map are both linear. So we can pass the linear combination through the integral and make some arguments.

Now we see if we know  $\Phi(t)$  on  $t \in \mathbb{R}$ , usually it's enough to recover p.

We would like to move to the next question now: how do the moments determine  $\Phi$ ? The main idea of solving this question is using Taylor expansion.

Now let's calculate the derivatives of  $\Phi$ :

$$\Phi^{(k)}(t) := \frac{d^k \Phi}{dt^k} = \frac{d^k}{dt^k} \int_{-\infty}^{\infty} e^{itx} p(x) dx = \int_{-\infty}^{\infty} e^{itx} (ix)^k p(x) dx.$$

At t = 0, we have  $\Phi^{(k)}(0) = i^k m_k$  so the Taylor series will be

$$\sum_{k=0}^{\infty} \frac{i^k m_k}{k!} t^k$$

In the best case, we hope the Taylor series has infinite radius of convergence. So the series will give us the characteristic function, which in turn gives us  $\mu$ . If  $\frac{|m_k|^{1/k}}{k} \to 0$  then

$$\left|\frac{m_k}{k!}\right| \le \frac{|m_k|}{(k/e)^k} \le \left(\frac{|m_k|^{1/k}e}{k}\right)^k \le \varepsilon^k$$

for every sufficiently large k and for all  $\varepsilon > 0$ . Then we know the Taylor series

$$\Phi(t) = \sum_{k=0}^{\infty} \frac{i^k m_k}{k!} t^k$$

converges for all t, so we could recover p(x).

It is also possible to weaken this condition. If  $\frac{|m_k|^{1/k}}{k}$  is bounded, or equivalently,  $|m_k| \leq CM^k k!$  where C, M are constant, then we have

$$\left|\frac{m_k}{k!}\right| \le \frac{|m_k|}{(k/e)^k} \le \left(\frac{|m_k|^{1/k}e}{k}\right)^k \le \Theta\left(\frac{1}{M}\right)^k$$

for every sufficient large k. This gives convergence on  $\left(-\Theta\left(\frac{1}{M}\right), \Theta\left(\frac{1}{M}\right)\right)$ .

Now let's look at the Taylor series at other center  $t_0$ :

$$\sum_{k=0}^{\infty} \frac{\Phi^{(k)}(t_0)}{k!} (t-t_0)^k.$$

Notice that

$$\left|\Phi^{(k)}(t)\right| \le \int_{-\infty}^{\infty} |x|^k p(x) dx$$

which is like the moment  $m_k$  but with an absolute value. We denote it as  $\tilde{m}_k$ . We can bound these by the even moments  $m_{2\ell}$ .

Remark 2.5. We have:

$$\tilde{m}_{2k} = m_{2k}$$
$$\tilde{m}_{2k+1} \le m_{2k+2}^{\frac{2k+1}{2k+2}}$$

With the inequality above, we have

$$\begin{split} \tilde{m}_{2k}^{1/(2k)} &\leq m_{2k}^{1/(2k)} \\ \tilde{m}_{2k+1}^{1/(2k+1)} &\leq m_{2k+2}^{1/(2k+2)} \end{split}$$

This means if the  $m_k$  is bound, that is actually what we assumed, then the absolute value will behave the same.

We then find that the Taylor series converges on a ball of radius  $\Theta(1/M)$  around any  $t_0 \in \mathbb{R}$ . A complex analysis argument using analytic continuation then shows that the moments determine the characteristic function on  $\mathbb{R}$ .

**Theorem 2.6.** If  $|m_k| \leq CM^k k!$  for some constant C, M, then  $\mu$  is determined uniquely by the moments  $m_k$ .

Let's see some examples on which this theorem works.

**Example 2.7.** Theorem 2.6 applies to any compactly supported distribution, and Gaussian distribution, any sub-Gaussian distribution, any exponential distribution, and any Poisson distribution.

Also, let's see one example that doesn't satisfy the condition of Theorem 2.6.

**Example 2.8** (Log-normal distribution).  $\mu = e^{\mathcal{N}(0,1)}$  having density p(x). In this case,  $m_k = e^{k^2/2}$  which is not good, since what we allowed is k! which is  $k^{O(k)}$  or  $e^{O(k \log k)}$ . Actually, we can check that we have the same moments for our distribution with density p(x) and another distribution with density proportional to  $p(x)(1 + \delta \sin(2\pi \log x))$  for small  $\delta > 0$ .

#### 2.1 Moment sequences

Let's look at one interesting side question. Before, we had  $m_k$ , and we were promised that they are the moment of some distribution and tried to find that distribution. Now we want to go one step further; suppose  $m_k \in \mathbb{R}$  are arbitrary numbers. We want to ask if there exists any distribution  $\mu$  such that  $m_k = \int x^k d\mu(x)$ .

The answer is not always; a simple condition we need to satisfy is  $m_{2k}$  needs to be larger or equal to 0. More generally, for all polynomial  $p \in \mathbb{R}[x]$ , we need to have  $\int p(x)^2 d\mu(x) \ge 0$ , which may be expanded to a linear inequality condition on the  $m_k$ . In fact, these are the only necessary conditions.

**Theorem 2.9.** Suppose for all k we have

$$M := \begin{bmatrix} m_0 = 1 & m_1 & m_2 & \cdots & m_k \\ m_1 & m_2 & m_3 & \cdots & \cdots \\ m_2 & m_3 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & m_{2k-1} \\ m_k & \cdots & \cdots & m_{2k-1} & m_{2k} \end{bmatrix} \succeq 0,$$

i.e.,  $v^T M v \ge 0$  for all v. One can check this condition is equivalent to

$$\int (v_0 + v_1 x + \dots + v_k x_k)^2 d\mu(x) \ge 0.$$

Then there exists a  $\mu$  such that  $m_k = \int x^k d\mu(x)$ .

# **3** Convergence of moments

Let's first recall our second question: suppose we have sequences of moments converge to some number

$$\lim_{n\to\infty} \mathbb{E} X_n^k \to m_k = \int x^k d\mu(x)$$

for all k. We want to know if this implies random variable  $X_n$  converge in distribution to some law  $\mu$ , i.e.,

$$\mathbb{P}[X_n \le t] \to \mu((-\infty, t])$$

We will answer this question in two steps. Let  $\mu_n$  be the law of  $X_n$ . First, let's consider the simplest case in which the implication holds:

**Theorem 3.1.** Suppose there exists an M > 0 such that

- $X_n \in [-M, M]$  with probability 1
- $\operatorname{supp}(\mu) \subseteq [-M, M]$

Then we have

$$\mathbb{P}[X_n \le t] = \int_{-M}^{M} \mathbb{1}_{[-M,t]}(x) d\mu_n(x) \to \int_{-M}^{M} \mathbb{1}_{[-M,t]}(x) d\mu(x)$$

*Proof.* Let's denote  $\mu_n$  be the law of  $X_n$ , then the assumption is equivalent to

$$\int x^k d\mu_n(x) \to \int x^k d\mu(x)$$

Then we want to show

$$\mathbb{P}[X_n \le t] = \int_{-M}^M \mathbb{1}_{[-M,t]}(x) d\mu_n(x) \to \int_{-M}^M \mathbb{1}_{[-M,t]}(x) d\mu(x)$$

We want to find a polynomial p that approximates  $\mathbb{1}_{[-M,t]}(x)$  to additive error  $\varepsilon$  away from t, additive error for instance let's say 2 near t.



Then we could check that

$$\left| \int_{-M}^{M} \mathbb{1}_{[-M,t]}(x) d\mu_n(x) - \int_{-M}^{M} \mathbb{1}_{[-M,t]}(x) d\mu(x) \right| \leq \left| \int p(x) d\mu(x) - \int p(x) d\mu(x) \right| + 4\varepsilon M + 2(\mu_n([t-\delta, t+\delta]) + \mu([t-\delta, t+\delta]))$$

We could choose  $\varepsilon, \delta$  small, and choose p, allowing us to make all terms arbitrarily small.

More generally, we can use the following theorem.

**Theorem 3.2** (Levy). A random variable  $X_n$  converge to distribution  $\mu$  if and only if the characteristic function  $\Phi_{X_n}(t)$  converge to the characteristic function  $\Phi_{\mu}(t)$  for all  $t \in \mathbb{R}$ .

**Corollary 3.3.** Under the same growth condition as before, i.e.,  $|m_k| \leq CM^k k!$ , if we have

$$\mathbb{E}X_n^k \to \int x^k d\mu(x) = m_k,$$

then  $X_n$  converge in distribution to  $\mu$ .

**Example 3.4** (Central limit theorem). Let  $\mu = \mathcal{N}(0, 1)$ , then we could see  $m_k = 0$  when k is odd,  $m_k = (k - 1)!!$  when k is even. With this, we can see  $m_k \leq (k - 1)!! \leq k!$  satisfies the growth condition.

Let's define

$$A_1, \ldots, A_n \stackrel{iid}{\sim} \mathsf{Unif}(\{\pm 1\}), \quad X_n = \frac{A_1 + \cdots + A_n}{\sqrt{n}}$$

Let's assume k is even and look at

$$\mathbb{E}X_n^k = n^{-k/2} \sum_{i_1,\dots,i_k} \mathbb{E}[A_{i_1} \cdots A_{i_k}]$$
  
=  $n^{-k/2} \#\{(i_1,\dots,i_k) \in [n]^k : each index happens even number of times\}$   
 $\approx n^{-k/2}(n) \cdot (n-1) \cdots (n-k/2+1) \#\{pairing of 1,\dots,k\}$ 

Since n goes to infinity and k is constant, we could say  $n^{-k/2}(n) \cdot (n-1) \cdots (n-k/2+1)$ cancel each other approximately. So we have

$$\mathbb{E}X_n^k \to \#\{\text{pairing of } 1, \dots, k\} = \mathbb{1}\{k \text{ even}\}(k-1)!!.$$

With some more careful argument, we could prove the central limit theorem for more general distributions of  $A_i$  in this way.

**Example 3.5.** Similar, though more complicated, versions of the same ideas are used to derive the  $\text{Exp}(\sqrt{(2\pi)/3})$  limit theorem for spacings in the random number partitioning problem.

## 4 Appearance in random matrix theory

Now we want to talk about the relevance to random matrices. Let's fix some notation here; in the following,  $A_n \in \mathbb{R}^{n \times n}_{sym}$  are symmetric random matrices. Since they are symmetric, they have real eigenvalues  $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ .

We define  $\mu_n$  the so-called *empirical spectral distribution* of  $A_n$  as follows:

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}.$$

An important thing we need to keep in mind is these are *random* probability measures.

We want to ask in what sense can we have  $\mu_n$  converges to a  $\mu$ , which is a deterministic probability measure?

These random probability measures are pretty complicated, but we have many tools to discuss the convergence of scalar random variables. So, let's build random variables from  $\mu_n$ ,

$$\mu_n([a,b]) = \frac{\#\{i \in [n] : \lambda_i \in [a,b]\}}{n}$$

We can then ask if this converges in some standard probability sense to  $\mu([a, b])$ , for all choices of a, b.

Notice that  $\int x^k d\mu_n(x)$  is a random variable instead of a number. We will have convenient tools to calculate the expectation of this random variable:

$$\mathop{\mathbb{E}}_{A_n} \int x^k d\mu_n(x) = \mathop{\mathbb{E}}_{A_n} \frac{1}{n} \sum_{i=1}^n \lambda_i^k = \frac{1}{n} \mathop{\mathbb{E}}_{A_n} \operatorname{Tr}(A_n^k).$$

Now we want to ask if this converges to  $\int x^k d\mu(x)$ . This is a necessary condition to have the above kind of convergence, but generally is not enough.

This technique will only tell us the expectation  $\mathbb{E}\mu_n([a, b])$  converge to  $\mu([a, b])$ , but what we want is convergence in probability, which asks if can we get the probability that fraction differs from the right-hand side by any  $\varepsilon$  goes to zero. We can't get this by only using the expectations of moments. One additional piece of information that suffices is enough control over  $\operatorname{Var}(\frac{1}{n}\operatorname{Tr}(A_n^k))$ . With additional such conditions, we could prove the convergence in probability by using Chebyshev inequality.