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Lecture 7: Moment Problems

1 Problem Statement

This is a very classical topic in probability theory. In general, this asks when knowing the
moments of a probability distribution or limits of moments of a sequence of distributions
will help us identify the underlying distribution or its limit.

Formally,

1. The simplest version of this kind of question is: for a given {mk}k≥1 we want to know
the existence: if there exists some probability measure µ over R such that

E
x∼µ

Xk = mk,∀k

We quickly recall that, in a more analysis notation, we could also write Ex∼µXk as∫
xkdµ(x). When µ has a density that we denote as p, we could rewrite the integral to∫
xkp(x)dx.

After asking if there exists such a µ, another natural question we would like to answer
is uniqueness: when such µ exists, will it be unique or not?

2. We have seen a more advanced question in the number partitioning lecture: given
random variables Xn and for every fixed k the moment

lim
n→∞

EXk
n →

∫
xkdµ(x)

then the question is when we could conclude Xn → µ in some other sense of conver-
gence.

3. At the end of this lecture, we want to discuss the appearances in random matrix theory
of convergence in moments.

2 Existence and uniqueness

So let’s start with the simplest version:
Given the sequence of moments of some µ, mk =

∫
xkdµ(x). We want to know how

and when we could recover µ from the given information. Part of this question is like
an algorithmic question when we give you these numbers, how do we calculate µ? More
abstractly, we want to clarify if there exists a µ′ 6= µ such that mk =

∫
xkdµ′(x).

To make our life easier, we assume our µ has density function p(x); this allows us to
compute µ by integrating p.

Now we first introduce characteristic function.
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Definition 2.1. Characteristic function Φ(t) ∈ C is defined as

Φ(t) = E
X∼µ

eitX =

∫ ∞
−∞

eitxp(x)dx.

Example 2.2. The characteristic function of the Gaussian law N (µ, σ2) is exp (iµt− 1
2
σ2t2).

The characteristic function of the exponential law Exp(λ), which we saw appear in the number
partitioning lecture, is 1

1− i
λ
t
.

Remark 2.3. One way to think of this is just like a moment-generating function but evalu-
ated with complex parameters.

Theorem 2.4. Given a Φ with some nice properties, for instance Φ is in L1, we have

p(x) =
1

2π

∫ ∞
−∞

eitxΦ(t)dt.

Proof. Notice that

RHS =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eit(y−x)p(y)dydt.

The idea of calculating this integral is to integrate eit(y−x) as a delta function.
To prove this more formally, we can show the result if p is some Gaussian, and then

approximate other p by some linear combination of Gaussian densities. Then we will use
that the map p 7→ Φ, and the inversion map are both linear. So we can pass the linear
combination through the integral and make some arguments.

Now we see if we know Φ(t) on t ∈ R, usually it’s enough to recover p.
We would like to move to the next question now: how do the moments determine Φ?

The main idea of solving this question is using Taylor expansion.
Now let’s calculate the derivatives of Φ:

Φ(k)(t) :=
dkΦ

dtk
=

dk

dtk

∫ ∞
−∞

eitxp(x)dx =

∫ ∞
−∞

eitx(ix)kp(x)dx.

At t = 0, we have Φ(k)(0) = ikmk so the Taylor series will be

∞∑
k=0

ikmk

k!
tk.

In the best case, we hope the Taylor series has infinite radius of convergence. So the

series will give us the characteristic function, which in turn gives us µ. If |mk|
1/k

k
→ 0 then∣∣∣mk

k!

∣∣∣ ≤ |mk|
(k/e)k

≤
(
|mk|1/ke

k

)k
≤ εk

for every sufficiently large k and for all ε > 0. Then we know the Taylor series

Φ(t) =
∞∑
k=0

ikmk

k!
tk
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converges for all t, so we could recover p(x).

It is also possible to weaken this condition. If |mk|
1/k

k
is bounded, or equivalently, |mk| ≤

CMkk! where C,M are constant, then we have∣∣∣mk

k!

∣∣∣ ≤ |mk|
(k/e)k

≤
(
|mk|1/ke

k

)k
≤ Θ

(
1

M

)k
for every sufficient large k. This gives convergence on

(
−Θ

(
1
M

)
,Θ
(

1
M

))
.

Now let’s look at the Taylor series at other center t0:

∞∑
k=0

Φ(k)(t0)

k!
(t− t0)k.

Notice that ∣∣Φ(k)(t)
∣∣ ≤ ∫ ∞

−∞
|x|kp(x)dx

which is like the moment mk but with an absolute value. We denote it as m̃k. We can bound
these by the even moments m2`.

Remark 2.5. We have:

m̃2k = m2k

m̃2k+1 ≤ m
2k+1
2k+2

2k+2

With the inequality above, we have

m̃
1/(2k)
2k ≤ m

1/(2k)
2k

m̃
1/(2k+1)
2k+1 ≤ m

1/(2k+2)
2k+2

This means if the mk is bound, that is actually what we assumed, then the absolute value will
behave the same.

We then find that the Taylor series converges on a ball of radius Θ(1/M) around any t0 ∈ R.
A complex analysis argument using analytic continuation then shows that the moments
determine the characteristic function on R.

Theorem 2.6. If |mk| ≤ CMkk! for some constant C,M , then µ is determined uniquely by
the moments mk.

Let’s see some examples on which this theorem works.

Example 2.7. Theorem 2.6 applies to any compactly supported distribution, and Gaussian
distribution, any sub-Gaussian distribution, any exponential distribution, and any Poisson
distribution.

Also, let’s see one example that doesn’t satisfy the condition of Theorem 2.6.

Example 2.8 (Log-normal distribution). µ = eN (0,1) having density p(x). In this case,
mk = ek

2/2 which is not good, since what we allowed is k! which is kO(k) or eO(k log k). Actually,
we can check that we have the same moments for our distribution with density p(x) and
another distribution with density proportional to p(x)(1 + δ sin (2π log x)) for small δ > 0.
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2.1 Moment sequences

Let’s look at one interesting side question. Before, we had mk, and we were promised that
they are the moment of some distribution and tried to find that distribution. Now we want
to go one step further; suppose mk ∈ R are arbitrary numbers. We want to ask if there exists
any distribution µ such that mk =

∫
xkdµ(x).

The answer is not always; a simple condition we need to satisfy is m2k needs to be larger
or equal to 0. More generally, for all polynomial p ∈ R[x], we need to have

∫
p(x)2dµ(x) ≥ 0,

which may be expanded to a linear inequality condition on the mk. In fact, these are the
only necessary conditions.

Theorem 2.9. Suppose for all k we have

M :=


m0 = 1 m1 m2 · · · mk

m1 m2 m3 · · · · · ·
m2 m3 · · · · · · · · ·
· · · · · · · · · · · · m2k−1
mk · · · · · · m2k−1 m2k

 � 0,

i.e., vTMv ≥ 0 for all v. One can check this condition is equivalent to∫
(v0 + v1x+ · · · vkxk)2dµ(x) ≥ 0.

Then there exists a µ such that mk =
∫
xkdµ(x).

3 Convergence of moments

Let’s first recall our second question: suppose we have sequences of moments converge to
some number

lim
n→∞

EXk
n → mk =

∫
xkdµ(x)

for all k. We want to know if this implies random variable Xn converge in distribution to
some law µ, i.e.,

P[Xn ≤ t]→ µ((−∞, t])

We will answer this question in two steps. Let µn be the law of Xn. First, let’s consider
the simplest case in which the implication holds:

Theorem 3.1. Suppose there exists an M > 0 such that

• Xn ∈ [−M,M ] with probability 1

• supp(µ) ⊆ [−M,M ]

Then we have

P[Xn ≤ t] =

∫ M

−M
1[−M,t](x)dµn(x)→

∫ M

−M
1[−M,t](x)dµ(x)
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Proof. Let’s denote µn be the law of Xn, then the assumption is equivalent to∫
xkdµn(x)→

∫
xkdµ(x)

Then we want to show

P[Xn ≤ t] =

∫ M

−M
1[−M,t](x)dµn(x)→

∫ M

−M
1[−M,t](x)dµ(x)

We want to find a polynomial p that approximates 1[−M,t](x) to additive error ε away
from t, additive error for instance let’s say 2 near t.

Then we could check that∣∣∣∣∫ M

−M
1[−M,t](x)dµn(x)−

∫ M

−M
1[−M,t](x)dµ(x)

∣∣∣∣ ≤ ∣∣∣∣∫ p(x)dµ(x)−
∫
p(x)dµ(x)

∣∣∣∣+ 4εM

+ 2(µn([t− δ, t+ δ]) + µ([t− δ, t+ δ]))

We could choose ε, δ small, and choose p, allowing us to make all terms arbitrarily
small.

More generally, we can use the following theorem.

Theorem 3.2 (Levy). A random variable Xn converge to distribution µ if and only if the
characteristic function ΦXn(t) converge to the characteristic function Φµ(t) for all t ∈ R.

Corollary 3.3. Under the same growth condition as before, i.e., |mk| ≤ CMkk!, if we have

EXk
n →

∫
xkdµ(x) = mk,

then Xn converge in distribution to µ.

5



Example 3.4 (Central limit theorem). Let µ = N (0, 1), then we could see mk = 0 when k
is odd, mk = (k − 1)!! when k is even. With this, we can see mk ≤ (k − 1)!! ≤ k! satisfies
the growth condition.

Let’s define

A1, . . . , An
iid∼ Unif({±1}), Xn =

A1 + · · ·+ An√
n

Let’s assume k is even and look at

EXk
n = n−k/2

∑
i1,...,ik

E[Ai1 · · ·Aik ]

= n−k/2#{(i1, . . . , ik) ∈ [n]k : each index happens even number of times}
≈ n−k/2(n) · (n− 1) · · · · · (n− k/2 + 1)#{pairing of 1, . . . , k}

Since n goes to infinity and k is constant, we could say n−k/2(n) ·(n−1) · · · · ·(n−k/2+1)
cancel each other approximately. So we have

EXk
n → #{pairing of 1, . . . , k} = 1{k even}(k − 1)!!.

With some more careful argument, we could prove the central limit theorem for more
general distributions of Ai in this way.

Example 3.5. Similar, though more complicated, versions of the same ideas are used to
derive the Exp(

√
(2π)/3) limit theorem for spacings in the random number partitionining

problem.

4 Appearance in random matrix theory

Now we want to talk about the relevance to random matrices. Let’s fix some notation here;
in the following, An ∈ Rn×nsym are symmetric random matrices. Since they are symmetric, they
have real eigenvalues λ1, . . . , λn ∈ R.

We define µn the so-called empirical spectral distribution of An as follows:

µn =
1

n

n∑
i=1

δλi .

An important thing we need to keep in mind is these are random probability measures.
We want to ask in what sense can we have µn converges to a µ, which is a deterministic

probability measure?
These random probability measures are pretty complicated, but we have many tools to

discuss the convergence of scalar random variables. So, let’s build random variables from
µn,

µn([a, b]) =
#{i ∈ [n] : λi ∈ [a, b]}

n
.

We can then ask if this converges in some standard probability sense to µ([a, b]), for all
choices of a, b.
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Notice that
∫
xkdµn(x) is a random variable instead of a number. We will have convenient

tools to calculate the expectation of this random variable:

E
An

∫
xkdµn(x) = E

An

1

n

n∑
i=1

λki =
1

n
E
An

Tr(Akn).

Now we want to ask if this converges to
∫
xkdµ(x). This is a necessary condition to have

the above kind of convergence, but generally is not enough.
This technique will only tell us the expectation Eµn([a, b]) converge to µ([a, b]), but what

we want is convergence in probability, which asks if can we get the probability that fraction
differs from the right-hand side by any ε goes to zero. We can’t get this by only using the
expectations of moments. One additional piece of information that suffices is enough control
over Var( 1

n
Tr(Akn)). With additional such conditions, we could prove the convergence in

probability by using Chebyshev inequality.
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