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Lecture 5: Random k-SAT III

In the previous lecture, we studied satisfiability of random k-SAT for fixed k: specifically
k = 2 and k = 3. The probability a random formula will be satisfiable is determined by the
number of variables n it has in relationship to the number of clauses m. Let n := αm. We
sought to find α∗ = α∗(k) such that, for a randomly sampled formula F ,

• α > α∗ ⇒ F is unsatisfiable whp.

• α < α∗ ⇒ F is satisfiable whp.

We now wish to estimate α∗ for the case of large k.

1 First moment method for general k

We begin by applying the first moment method (1MM) to the random variable Z = #{x ∈
{0, 1}n : F (x) = 1}, which gives the expected number of solutions to a random formula F .
Recall that the 1MM tells us that if EZ vanishes as n → ∞, then F is unsatisfiable whp.
We have

EZ = 2n
(

1− 1

2k

)m
=

[
2

(
1− 1

2k

)α]n
This inner expression equals 1 when α∗(k) = log(1

2
)/ log(1− 1

2k
). Using Taylor expansion we

get that

α∗(k) ≈ − log(2)

0− 1
2k

= log(2) · 2k

This gives us a lower bound on α∗: we know that for smaller α the expectation vanishes,
however, for larger α we cannot rule out the case that random formula are mostly unsat-
isfiable, but occasionally have a huge number of solutions. To do this, we can bound Z’s
variance using the second moment method (2MM).

2 Second moment method for general k

Recall that using the Cauchy-Schwarz inequality we can derive the following inequality:

Pr[Z > 0] ≥ (EZ)2

EZ2

Thus we can show there is likely a satisfying assignment whenever the second moment of Z
is not much larger than the square of its expectation. We will try to find when this is the
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case. We begin by obtaining

EZ2 = EF

 ∑
x∈{0,1}n

1{x satisfies F}

2

=
∑

x,y∈{0,1}

PF [x, y both satisfy F ]

=
∑

x,y∈{0,1}

(PC [x, y both satisfy C])m

where the last equality follows from the fact each clause is sampled iid. We further break
down the probability that x and y, both sampled iid from Unif({0, 1}n), satisfy an arbitrary
clause C as follows:

PC [x, y both satisfy C] = 1− P[x, y don’t both satisfy C]

= 1− P[x unsat]− P[y unsat] + P[x, y both unsat]

= 1− 1

2k
− 1

2k
+ P[x, y both unsat]

This last probability term can be expressed

P[x, y both unsat] =
#{C that both violate}

#{all C}

We next define an “overlap” function r := r(x, y) = #{i : xi = yi}, which we use to state

#{C that both violate}
#{all C}

=

(
r
k

)
2k
(
n
k

) ≈ ( r

2n

)k
where we use the fact

(
n
k

)
≈ nk

k!
as shown in the previous lecture. We can now write∑

x,y∈{0,1}

(PC [x, y both satisfy C])m ≈
∑

x∈{0,1}n

n∑
r=0

#{y : r(x, y) = r}
(

1− 1

2k−1
+
( r

2n

)k)m
= 2n

n∑
r=0

(
n

r

)(
1− 1

2k−1
+
( r

2n

)k)m
:= 2n

n∑
r=0

(
n

r

)
f
( r
n

)m
where we define a function f for closer analysis. We first observe that when r

n
= 1

2
we have

f
( r
n

)
=

(
1− 1

2k−1
+

1

4k

)m
=

(
1− 1

2k

)m
Consider that the contribution to f near r

n
= 1

2
is approximately

2n ·
n/2+c

√
n∑

r=n/2−c
√
n

(
n

r

)
f
( r
n

)m
≈ f

(
1

2

)m
· 2n · 2n =

[
2

(
1− 1

2k

)α]2n
= (EZ)2
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The 2MM then tells us that for α for which the majority contribution of f comes from its
value near n

2
, we can say F is satisfiable whp. Equivalently, we must show that x, y sampled

iid from the uniform distribution over all satisfying assignments to F satisfies r(x, y) ≈ n
2
.

As it turns out, this is not the case: the set of satisfying solutions tends to have bias towards
either True or False for each of the variables, and this bias grows stronger as α grows. We
proceed to show that the majority contribution of f does not come from its value near n

2
,

except for the vacuous case of α = 0.
We write r = tn for t ∈ [0, 1] and apply Stirling’s approximation to

(
n
tn

)
:(

n

tn

)
=

n!

tn!((1− t)n)!

≈
(
n
e

)n(
tn
e

)tn ( (1−t)n
e

)(1−t)n
=

[
1

tt (1− t)1−t

]n
= exp(n[−t log t− (1− t) log(1− t)]) =: exp(n ·H(t))

Using this newly defined function H(t) we can then write(
n

tn

)
f(t)m ≈

(
eH(t)f(t)α

)n
= exp(n[H(t) + α log f(t)]) =: exp(n · gα(t))

Finally, we look at the behavior of gα(t)− gα(1
2
) as α grows.

As claimed, we see that as α > 0 grows that increasingly more of the contribution of gα
(and thus f) comes from its value at inputs greater than n

2
. In the next lecture we’ll see

how to address the “assignment drift” of satisfying solutions through a restricted counting
argument.
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