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Lecture 5: Random k-SAT 111

In the previous lecture, we studied satisfiability of random k-SAT for fixed k: specifically
k =2 and k = 3. The probability a random formula will be satisfiable is determined by the
number of variables n it has in relationship to the number of clauses m. Let n := am. We
sought to find a* = a*(k) such that, for a randomly sampled formula F,

e o > o = I is unsatisfiable whp.
e o < af = F is satisfiable whp.

We now wish to estimate a* for the case of large k.

1 First moment method for general k&

We begin by applying the first moment method (1MM) to the random variable Z = #{x €
{0,1}" : F(x) = 1}, which gives the expected number of solutions to a random formula F'.
Recall that the IMM tells us that if EZ vanishes as n — oo, then F' is unsatisfiable whp.

We have N
" 1\™ 1\*

This inner expression equals 1 when a*(k) = log(3)/ log(1 — 55). Using Taylor expansion we
get that

o’ (k) =~ _Oli—g(? — log(2) - 2"

This gives us a lower bound on a*: we know that for smaller o the expectation vanishes,
however, for larger o we cannot rule out the case that random formula are mostly unsat-
isfiable, but occasionally have a huge number of solutions. To do this, we can bound Z’s
variance using the second moment method (2MM).

2 Second moment method for general k

Recall that using the Cauchy-Schwarz inequality we can derive the following inequality:

(E2)”
EZ?

Pr[Z > 0] >

Thus we can show there is likely a satisfying assignment whenever the second moment of Z
is not much larger than the square of its expectation. We will try to find when this is the



case. We begin by obtaining
2

EZ* =Ep Z 1{x satisfies F'}
ze{0,1}"
= Z Pr [x,y both satisfy F]
z,y€{0,1}
- Z (P¢ [x,y both satisfy C])™
z,y€{0,1}

where the last equality follows from the fact each clause is sampled iid. We further break
down the probability that = and y, both sampled iid from Unif({0, 1}"), satisfy an arbitrary
clause C' as follows:
Pcolz,y both satisfy C] =1 — P[x,y don’t both satisfy C]
= 1 — P[z unsat] — P[y unsat] + P[z,y both unsat]
1 1

=1- 5 o + Pz, y both unsat]
This last probability term can be expressed
#{C that both violate}

#{all C'}

We next define an “overlap” function r := r(z,y) = #{i : ; = y;}, which we use to state

P[z,y both unsat] =

#{C that both violate}  (;) /7 \*
e~ ~ )

where we use the fact (Z) ~ 7 as shown in the previous lecture. We can now write

Z (P¢ [z, y both satisfy C])" =~ Z i#{y (2, y) =) (1 B 21611 N (%)k)m

z,ye{0,1} z€{0,1}™ =0

() (-5 ()
=22 () ()

T

where we define a function f for closer analysis. We first observe that when = = % we have
(@) ostee 8 ()
Consider that the contribution to f near = = % is approximately
o SN Y (Y = 2 (12 2T — e
X G =eG) s | e



The 2MM then tells us that for a for which the majority contribution of f comes from its
value near 7, we can say F' is satisfiable whp. Equivalently, we must show that z,y sampled
iid from the uniform distribution over all satisfying assignments to F' satisfies 7(z,y) ~ 3.
As it turns out, this is not the case: the set of satisfying solutions tends to have bias towards
either True or False for each of the variables, and this bias grows stronger as o grows. We
proceed to show that the majority contribution of f does not come from its value near 3,
except for the vacuous case of a = 0.

We write r = tn for ¢ € [0,1] and apply Stirling’s approximation to (;!):

(i) = =
G

(1) (0m) "

el
R
= exp(n[—tlogt — (1 —t)log(l —t)]) =: exp(n - H(t))

Using this newly defined function H(t) we can then write

(”)f(t)?“ ~ (M0 £ (%) = exp(nlH () + arlog f(1)]) = exp(n - ga (1))

tn

Finally, we look at the behavior of g, (t) —

As claimed, we see that as o > 0 grows that increasingly more of the contribution of g,
(and thus f) comes from its value at inputs greater than 7. In the next lecture we’ll see
how to address the “assignment drift” of satisfying solutions through a restricted counting

argument.
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