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Lecture 3: Integer Partitioning III; Random k-SAT

1 Number Partitioning in the Satisfiable Regime

Recall that in the last lecture we showed, by the second moment method, that when
2n/B

√
n → ∞, then with high probability there exist perfect partitions of a1, . . . , an. We

call this the “satisfiable” regime of the number partitioning problem. Let us give a few more
details about how the problem behaves in this case.

Define the objective function that we are interested in optimizing:

obj(x) :=

∣∣∣∣ n∑
i=1

xiai

∣∣∣∣ for x ∈ {−1, 1}. (1)

We can then split up the range of our objective function into two-wide bins, {0, 1}, {2, 3},
and so forth. Let Y2k equal the number of x that achieve objective value in {2k, 2k + 1}.
We recall that we observed that, for any particular draw of ai, only even or only odd values
of obj(x) can be achieved by any x. But, binning the objective values this way, one can
show that the Y2k concentrate; in particular, when 2n/B

√
n→∞, then there are many x’s

achieving values in each bin, and so each Y2k is large with high probability.

Figure 1: A plot of the achievable values of obj(x) in the satisfiable regime.
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2 Number Partitioning in the Unsatisfiable Regime

The far more interesting case from the point of view of the optimization landscape is the
“unsatisfiable” regime, when 2n/B

√
n→ 0. In this regime, with high probability, the Y2k = 0

for all k up to any constant value (by the first moment method). We are still interested in
the value of the problem, i.e., the smallest achievable obj(x) over all x:

min
x∈{±1}n

obj(x) =: d0. (2)

Since obj(x) = obj(−x), each Y2k is even, so heuristically we might expect that d0 should
be the smallest value such that

E[Y0 + Y2 + ...+ Yd0 ] = 2. (3)

Since each Y2k is a sum of four of the Zk (as defined in previous lectures), and E[Zk] ≈√
3/2π2n/B

√
n for each small k, we expect to have

E[Y0 + Y2 + ...+ Yd1 ] ≈
d0
2
· 4 · E[Z0]

≈ d0
2
· 4 ·

√
3

2π

2n

B
√
n

= d0

√
6

π

2n

B
√
n

This gives us a heuristic value for the bottom value of our objective function over all x,

d0
?
=

√
2π

3

B
√
n

2n
. (4)

Figure 2: A plot of the achievable values of obj(x) in the unsatisfiable regime.
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In fact, surprisingly, one can show that this heuristic holds along with much stronger
statements about the x achieving small objective values. Consider not just the minimizing
value of obj(x) but the ordered set of smallest values of the objective function. We can

plot these minimal values, normalizing our axis to order constant. Here, d̂i denotes the ith
smallest value of the objective function. We then denote the sequence of ∆i’s to represent
the normalized distances between the minimal values of the objective function. One may
show the following with some involved moment calculations.

Theorem 2.1. Fix k ∈ N. Let v = (∆1, ...,∆k) ∈ Rk
≥0. Then, for A ⊂ Rk

≥0,

lim
n→∞

P((∆1, ...,∆k) ∈ A) = P((E1, ..., Ek),∈ A) (5)

where the Ei are distributed as

Ei
iid∼ Exp

(√
3

2π

)
. (6)

That is, as n tends to infinity, the vector of normalized distances between the k minimal
values of our objective function tends to a vector of independent and identically distributed
exponential variables (that is, the minimal values form a Poisson process). Note that, in
particular, we have

E[d̂0]→ E[E1] =

√
2π

3
, (7)

confirming our heuristic prediction.
For further information about the optimization landscape, we may consider the configu-

ration of the vectors x that achieve these small values of obj(x). In particular, one can show
(again using modified moment calculations) that, with high probability,

E max
1≤i≤j≤k

|〈xi, xj〉| = O(
√
n) (8)

In other words, the k minimizing x’s are distributed with the same correlation in the
hypercube of dimension n as k random points would be, suggesting that finding these points
should be computationally hard.

3 Analogy to the Random Energy Model

The above results were predicted in the physics literature before they were proved math-
ematically by the following simple heuristic. The integer partitioning problem is specified
by the random mapping obj : {±1}n → R≥0, with the values of obj(x) being correlated in
complicated ways since they all depend on the underlying ai.

In the random energy model, we consider a related but different random mapping obj′ :
{±1}n → R≥0, where the values of obj′(x) are independent. Consider the value of the original
function obj(x) for a random x. This is the sum of n i.i.d. random variables distributed as
Unif({−B, . . . , B}), in particular having variance roughly 1

3
B2. So, by the central limit

theorem, we expect

obj(x)
(d)
≈
∣∣∣∣N (0,

1

3
B2n

)∣∣∣∣ , (9)
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with |N (·, ·)| denoting the “folded” normal distribution given by the absolute value of a
normal variable.

In the random energy model, we define

obj′(x)
iid∼
∣∣∣∣N (0,

1

3
B2n

)∣∣∣∣ . (10)

Since the objective values of this model are just i.i.d. random variables, it is much easier to
compute all of the statistics from the previous section for obj′. Surprisingly, all of the results
above hold for this new objective function!

This suggests that the computational problem of minimizing obj should behave like that
of minimizing obj′. But, the latter is just the problem of finding the smallest of 2n i.i.d.
draws of a particular distribution, which is obviously computationally hard. So, this analogy
gives some evidence that we should expect the number partitioning problem to be very hard
in the unsatisfiable regime.

4 Introduction to Random k-SAT

The random k-SAT problem refers to the problem of finding a satisfying truth assignment
for a Boolean formula in z1, ..., zn ∈ 0, 1. A k-SAT instance consists of m clauses, each
consisting of k literals joined by inclusive disjunctions. Such a k-SAT formula is satisfied
when all of the constituent clauses are satisfied, and looks like:

F (z) =((¬)z11 ∨ (¬)z12 · · · (¬)z1k)∧ (11)

... (12)

((¬)zm1 ∨ (¬)zm2 · · · (¬)zmk), (13)

with each negation ¬ possibly occurring or not occurring.
In the random k-SAT problem, we choose each of the m clauses independently and

uniformly at random from the set of all
(
n
k

)
2k possible clauses. The problem we are concerned

with is whether or not there exists some assignment x ∈ 0, 1n such that F (x) = 1. Numerical
experiments suggest the following phase transition or threshold phenomenon.

Conjecture 4.1. Suppose that k and some α ∈ R≥0 are fixed, and m = αn with n → ∞.
Then, there exists α∗ = α∗(k) such that

α > α∗ =⇒ F is unsatisfiable with high probability,
α < α∗ =⇒ F is satisfiable with high probability.

(14)

We leave the proof of this conjecture for future lectures but consider some of the important
questions we may want to ask ourselves going forward. The partial proof of this conjecture
is very involved, but we will see some of the basic ideas involved in the coming few lectures
and in the remainder of the course. As a preview, we will be concerned with the following
questions: first, what is this value of α∗? And, what is the structure of satisfying x’s when
α < α∗?
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