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Lecture 1: Phase transition in random integer partitioning

1 Problem statement

The first average-case problem we will study, to start getting used to using moment methods
to extract information about optimization landscapes, is the integer partitioning problem.
In general, the problem statement is as follows.

• Input: a1, . . . , an ∈ N.1

• Problem: Find a set A ⊆ [n] := {1, . . . , n} so that
∑

j∈A aj =
∑

j /∈A. Or, a little
more generally, solve the optimization problem

minimize |
∑

j∈A aj −
∑

j /∈A aj|
subject to A ⊆ [n].

(1)

This is a classical computational problem (similar to things like knapsack problems that
you may be more familiar with) that is NP-hard in the worst case. Here, we will ask about
the average-case computational complexity of this problem. That means we will take the
aj to be random and try to determine whether there are efficient algorithms that typically
solve integer partitioning effectively over a particular distribution of inputs. We will fix some
B ∈ N, and consider the distribution

a1, . . . , an
iid∼ Unif({0, 1, . . . , B − 1}). (2)

The question we are most interested in is the algorithmic question of whether the opti-
mizer A? of (1) is easy to find or approximate. But, we will start out thinking about the
simpler combinatorial (or, thinking of this problem as an optimization landscape over the
n-dimensional hypercube identified with subsets A ⊆ [n], more on which below, geometric)
question of when there exist perfect partitions with

∑
j∈A aj =

∑
j /∈A aj, and more generally

of what the value (just some random integer) of the optimization problem (1) typically is.

2 First moment method

Let us first focus on the most specific problem of determining for which sequences of the
parameters (n,B) perfect partitions exist or do not exist with high probability.2 Intuitively,
it should be clear that it becomes less likely for perfect partitions to exist as B gets larger,

1For us, N = Z≥0 = {0, 1, 2, . . . }.
2A sequence of events happens with high probability if their probability tends to 1.
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since this requires an increasingly “special” cancellation to happen among the aj (think
about, for example, comparing B = 2 and B = 100). So, we will view B = B(n), and
will try to identify the critical scaling of B as a function of n around which we switch from
typically having perfect partitions to typically not having them.

As a side note, to prepare for our calculations, let us identify A ⊆ [n] with x ∈ {±1}n so
that xj = 1 if j ∈ A and xj = −1 if j /∈ A. Then, our question is the same as whether there
exists x ∈ {±1}n such that

〈x,a〉 =
n∑

j=1

xjaj = 0. (3)

A basic idea for starting to do this is to count the number of perfect partitions:

Z := #

{
x ∈ {±1}n : 〈x,a〉 = 0

}
. (4)

This is a random variable, inheriting its randomness from the randomness in the aj. We
are interested in whether Z = 0 with high probability or Z ≥ 1 with high probability. It
turns out that we can sometimes establish the former just by calculating the expectation of
Z, which is usually much easier than establishing the entire distribution of Z.

Proposition 2.1 (Basic first moment method). Suppose Zn ∈ N is a sequence of random
variables, and EZn → 0. Then, Zn = 0 with high probability (i.e., P[Zn = 0]→ 1).

Proof. Using Markov’s inequality,

P[Zn 6= 0] = P[Zn ≥ 1] ≤ EZn

1
= EZn → 0 (5)

by the assumption.

We will see that it is not always reasonable to hope for the converse, that if EZ is large
enough then Z ≥ 1 with high probability. But, let us proceed optimistically and see what a
heuristic calculation of our EZ leads us to predict.

3 Heuristic threshold derivation

We start with a standard manipulation of such expectations:

EZ = E
∑

x∈{±1}n
1{〈x,a〉 = 0}

=
∑

x∈{±1}n
E[1{〈x,a〉 = 0}]

=
∑

x∈{±1}n
P[〈x,a〉 = 0]. (6)
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1 0 0 1 · · · 0 1 · x1

0 0 1 0 · · · 1 1 · x2
...

...
...

0 0 1 0 · · · 1 1 · xn

1 0 0 · · · 0 1 0 0 · · · 0 0 =
∑n

j=1 xjaj

Figure 1: A schematic illustration of the calculation of
∑n

j=1 xjaj in binary that is discussed
in Section 3.

We will see more precise ways to calculate these probabilities later, but for now let us give
a heuristic derivation (taken from Section 14.5 of [MM11], along with lots of our discussion
here). Let

b := log2B, (7)

the number of bits needed to specify a number in {0, 1, . . . , B − 1}. Now, consider writing
out each aj in binary. Then, our random model of the aj is realized by taking each of b bits
in each aj to be drawn from Unif({0, 1}). Consider now calculating 〈x,a〉 =

∑n
j=1 xjaj in

binary. The number of bits in the output will be roughly

log2
(
|〈x,a〉|

)
≈ log2

(
B ·

∣∣∣∣∣
n∑

j=1

xj

∣∣∣∣∣
)

= b + log2

(∣∣∣∣∣
n∑

j=1

xj

∣∣∣∣∣
)
. (8)

Note that the least significant b of these bits are distributed i.i.d. as Unif({0, 1}), as they
are just XOR’s of n bits distributed i.i.d. as Unif({0, 1}), possibly further XOR’d with bits
carried from less significant “columns” of the summation. Once we consider bits beyond the
bth place, this will no longer hold, since now we are just adding carried bits from the less
significant places of the summation. (It may help to consult Figure 3.)

But, let us make the heuristic leap that all of the bits in
∑n

j=1 xjaj may be viewed as
i.i.d. random variables drawn from Unif({0, 1}). Then, we would predict:

P[〈x,a〉 = 0] ≈
(

1

2

)b+log2(|
∑n

j=1 xj |)

=
1

B|
∑n

j=1 xj|
.

Finally, recall that for most x ∈ {±1}n, say, all but any small fraction, we have |
∑n

j=1 xj| =
Θ(
√
n). This may be viewed as a standard observation about the magnitude of simple

random walks on the integers after n steps, or as the special case of the central limit theorem
sometimes called the de Moivre–Laplace theorem. You should ideally be familiar with these
ideas already, but in case not, Section 3.1 of [Dur19], which you can find online, gives a good
treatment.

Combining our calculations, we are led to the following prediction.

Conjecture 3.1. EZ = Θ(2n/B
√
n) = Θ(2n−log2 n/2−b).
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Using the first moment method and trusting that its converse might hold as well, we can
also conjecture the following.

Conjecture 3.2. Suppose B = B(n). Let us write

B∗ = B∗(n) =
2n

√
n
. (9)

Then:

• If B/B∗ → ∞, then with high probability there do not exist perfect partitions of
a1, . . . , an.

• If B/B∗ → 0, then with high probability there exist perfect partitions of a1, . . . , an.

Note that the first claim would follow from Conjecture 3.1 together with Proposition 2.1,
while we do not yet have tools from which the second claim would follow.

Perhaps surprisingly, one can do numerical experiments and confirm that this conjecture
appears to be true, despite our quite sloppy reasoning above! In particular, even the

√
n

term which came from maybe the most questionable one of our sequence of approximations
appears to be the correct scaling. In the next lecture, we will perform a first moment
calculation more carefully to verify Conjecture 3.1, and will introduce the second moment
method for proving the second claim of Conjecture 3.2.
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