
Assignment 1

CPSC 664 (Spring 2023)

Modern Probability for Theoretical Computer Science

Assigned: February 15, 2023 Due: March 10, 2023

Solve any three out of the five problems. If you solve them all, I will grade the first three.
Each problem will be worth an equal amount towards your grade.

Problem 1 (Coupon collector problem). Suppose that, every day, you receive one of n pos-
sible coupons in the mail, chosen uniformly at random (with replacement between different
days). We want to know: how many days will it take for you to collect at least one copy of
each coupon? Suppose this process goes on for m days.

1. Use the first moment method to show that, if m = m(n) ≥ (1 + ε)n logn, then with
high probability as n→∞ after m days you will have a copy of each coupon.

2. Use the second moment method to show that, ifm =m(n) ≤ (1−ε)n logn, then with
high probability as n→∞ after m days you will not have a copy of some coupon.

Here ε > 0 is a constant not depending on n. The way the problem is formulated above
should suggest to you the “right” choice of the counting random variable Z to analyze.

Problem 2 (Sherrington-Kirkpatrick Hamiltonian). Let W be drawn from the unnormalized
Gaussian orthogonal ensemble, i.e., having Wij = Wji ∼N (0,1) and Wii ∼N (0,2) indepen-
dently. Consider the random optimization problem

opt(W ) := max
x∈{±1}n

|x>Wx|. (1)

1. Use the first moment method to prove an upper bound of the form “opt(W ) ≤ CnK
with high probability as n → ∞.” Make K as small as possible. You may look up and
cite a suitable tail bound on a Gaussian random variable.

2. Show a lower bound of matching order (i.e., a lower bound of the form “opt(W ) ≥ cnK
with high probability as n→∞” for a different K and some 0 < c ≤ C) by the following
argument. Let v be a unit eigenvector of W having eigenvalue ‖W ‖. Let x ∈ {±1}n
have xi = sgn(vi). By expanding x in the basis of eigenvectors of W , argue that, with
high probability, |x>Wx| ≥ δ|v>Wv| ·n = δ‖W ‖ ·n for some small constant δ > 0.
You may use that W is rotationally invariant, meaning that it has the same law as
QWQ> for any orthogonal matrix Q.
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Problem 3 (Half-and-half SAT1). Consider a variant of 2k-SAT where we view a clause as
satisfied if exactly k of its literals are true and k of its literals are false. Call such a prob-
lem 2k-HALFSAT. Consider a random 2k-HALFSAT instance on n variables and m = αn
randomly chosen clauses, as in the SAT and NAESAT models from class.

1. Use the first moment method to find an α1 = α1(2k) such that, when α > α1, then a
random 2k-HALFSAT formula is unsatisfiable with high probability. Give the asymp-
totics of α1(2k) as k→∞.

2. Suppose 2k = 4. Adapt the second moment method from class (carefully up to the
heuristics we allowed ourselves in class) to describe an α2 = α2(4) < α1(4) such that,
when α < α2, then a random 2k-HALFSAT formula is satisfiable with high probability.
Your description should be in terms of the critical points of an explicit univariate
function. Estimate the optimal α2 by plotting the relevant “overlap curves.”

3. Make a conjecture about whether or not

α1(2k)
?= (1+ o(1))α2(2k), (2)

as k→∞, i.e., whether the “vanilla” first and second moments identify the critical α to
leading order, as Achlioptas and Moore showed for NAESAT. Support your conjecture
with numerical experiments (i.e., plots of overlap curves for larger k).

Problem 4 (Random entire functions). Consider the following random power series: let
ak ∼N (0, 1

k!) for k ≥ 0 be independent Gaussian random variables. Write

f(z) :=
∑
k≥0

akzk. (3)

1. Show that, with probability 1, this power series has infinite radius of convergence.
(You may look up and use Gaussian tail bounds and the Borel-Cantelli lemma.) Thus,
with probability 1, this random f is an entire function (holomorphic on all of C).

2. Is this Gaussian process stationary? You may assume here and below that f(z) is a
Gaussian process that, even though it is an infinite Gaussian series for any fixed z,
may be manipulated formally in the same way as the finite Gaussian sums from class.

3. You may assume that the Kac-Rice formula for counting zeros of functions of one
variable applies to f(z). Use the Kac-Rice formula to compute the expected number
of zeros of f in any interval [a, b] ⊂ R. (Remember our discussion of using the
covariance kernel K(x,y) := E[f (x)f(y)] to compute the covariance of f(x) and
f ′(x) for any particular x. Also, you may look up how to do Gaussian conditioning
calculations if you are not familiar with them.) In words, what does the answer lead
you to expect about the distribution of the real zeros of f ?

1This is Problem 14.30 from The Nature of Computation.
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Problem 5 (Local statistics of isotropic fields). Let f : RN → R be a random Gaussian func-
tion, i.e., having (f (x))x∈RN form a real-valued Gaussian process. Suppose Ef(x) = 0 for all
x, that with probability 1 f is differentiable arbitrarily many times (i.e., is C∞), and that the
covariance kernel is of the form

K(x,y) = E[f (x)f (y)] = k
(

1
2
‖x− y‖2

)
, (4)

for ‖·‖ the usual Euclidean norm and k : R→ R some smooth function. This is a special case
of the concept of a stationary process that we saw in class, sometimes called an isotropic
process.

1. Let a,b ∈ N have different parity (one even and one odd), and let i1, . . . , ia, j1, . . . , jb ∈
[N]. Show that

E

[
∂af

∂xi1 · · · ∂xia
(x)

∂bf
∂xj1 · · · ∂xjb

(x)
]
= 0. (5)

Give a fully rigorous proof without heuristics steps (except that you may exchange
differentiation and expectations without justification). Conclude that, for any x, the
gradient ∇f(x) is independent of both the value f(x) and the Hessian ∇2f(x).

2. For any given x, write down the joint covariance matrix of (f (x),∇f(x),∇2f(x)) in
terms of the function k (and its derivatives).
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