
Assignment 2

CPSC 663: Sum-of-Squares Optimization (Spring 2022)

Assigned: March 14, 2022 Due: April 4, 2022

Solve Problem 1, and any two out of the three remaining problems. If you solve them all,
I will grade Problems 2 and 3. Each problem will be worth an equal amount towards your
grade.

Problem 1 (Project topic). Propose a paper to read or an open problem to discuss for your
final project.

If you plan to read a paper, tell me the title and authors, read the abstract and introduc-
tion, and describe in one paragraph how it relates to SOS, what aspect of the paper you are
interested in, and what else you might have to read to understand it.

If you plan to work on an open problem, write down the problem, give a few references
concerning it, and outline in one paragraph what approach you plan to try or what numerical
experiments you plan to run.

In either case, your final project will consist of a presentation on the last day of class
(20-30 minutes) and a short write-up (1-2 pages) about whatever you choose here.

Problem 2 (Eigenvector perturbation bound). Suppose M � 0, and ∆ has the same di-
mensions as M with ‖∆‖ < λ1(M) − λ2(M) (the matrix norm without a subscript always
denotes the operator norm). Let v be the top eigenvector of M and ṽ the top eigenvector of
M +∆ (so that both are unit vectors). You will show the perturbation inequality

〈v, ṽ〉2 ≥ 1−
( ‖∆‖
λ1(M)− λ2(M)− ‖∆‖

)2

. (1)

In our SOS arguments, we have been implicitly invoking something like this when rounding
pseudoexpectations by taking the top eigenvector of the degree 2 pseudomoment matrix.
Follow these steps:

1. Show that λ1(M)− λi(M +∆) ≥ λ1(M)− λ2(M)− ‖∆‖ for all i ≥ 2.

2. Using Step 1, show that ‖∆v‖ ≥ (λ1(M)− λ2(M)− ‖∆‖) · ‖(I − ṽṽ>)v‖.

3. Complete the proof.
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Problem 3 (2 → 4 norm and small set expansion). Let G = (V , E) be a d-regular graph
with adjacency matrix A. Fix some α ∈ [0,1], and let U be the subspace spanned by all
eigenvectors of A with eigenvalue at least αd. Let S ⊆ V .

Suppose we draw x ∼ Unif(S) and then y a uniformly random neighbor of x. We then
define

Φ(S) := P[y ∉ S], (2)

a measure of the expansion of S. Show that

Φ(S) ≥ 1−α− ‖U‖2
2→4

√
|S|. (3)

Hint: First, show that ‖U‖2→4 = ‖P ‖2→4 = ‖P ‖4/3→2, where P is the projection matrix
to U . Then, let v be the indicator vector of S, vi = 1{i ∈ S}. Express Φ(S) in terms of a
quadratic form with v and A, and consider the decomposition of v into components in
U and U⊥.

This shows that when the 2 → 4 norm of the top eigenspace of a graph is small then the
graph is a small set expander, i.e., sufficiently small subsets of vertices have large expansion.
In fact, a converse is also true, which has been used to show that a good approximation
of the 2 → 4 norm would refute the Small Set Expansion Hypothesis, which states, roughly
speaking, that it is hard to distinguish good small set expanders from bad ones. This gives
some evidence that it should be hard to approximate the 2 → 4 norm (and other similar
quantities) in the worst case.

Problem 4 (Association schemes). Recall the definition of an association scheme. We have
matrices In = A1,A2, . . . ,Am ∈ {0,1}n×nsym where all Ai are non-zero and satisfy the follow-
ing properties:

m∑
j=1

Aj = 11>, (4)

AiAj =
m∑
k=1

cijkAk for some cijk ∈ R. (5)

Recall that (5) implies that the Ai commute, and so are simultaneously diagonalizable. That
is, there exist projection matrices P1, . . . ,Pd to mutually orthogonal subspaces of Rn and
some λij such that

Ai =
d∑
j=1

λijPj, (6)

so that λi1, . . . , λid are the eigenvalues of Ai. In this problem we will show how one can find
the λij from the cijk.

1. Show that the Ai are linearly independent.
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2. Show that if A is a symmetric matrix and P is the orthogonal projection to the
eigenspace of an eigenvalue λ, then P is a polynomial in A. Conclude that we may
take d = m above (i.e., the number of distinct eigenspaces of each Ai is at most the
total number of Ai in the scheme, as we saw in the Johnson scheme example in class),
and that in this case the Pj are a basis for the span of the Ai.

3. Show that λikλjk =
∑d
`=1 cij`λ`k.

4. Let E ∈ Rm×m have Eij = λji. Let Li ∈ Rm×m have (Li)kj = cijk. Show that E is
non-singular, and that

ELiE
−1 = diag(λi1, . . . , λim). (7)

That is, the distinct eigenvalues of Ai ∈ Rn×nsym are the eigenvalues of Li ∈ Rm×msym ,
usually a much smaller matrix.
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