
Assignment 1

CPSC 663: Sum-of-Squares Optimization (Spring 2022)

Assigned: February 12, 2022 Due: March 4, 2022

Solve any four out of the five problems. If you solve them all, I will grade the first four.
Each problem will be worth an equal amount towards your grade.

Problem 1 (Non-negative principal component analysis). Suppose S ∈ Rn×n is symmetric.
Consider the optimization problem

maximize x>Sx
subject to

∑n
i=1x

2
i = 1,

xi ≥ 0 for all i ∈ [n].
(1)

This kind of problem is sometimes called positive or non-negative PCA.

1. Formulate the degree 2 Lasserre relaxation, as an explicit matrix SDP, with constraints
based on Putinar’s Positivstellensatz.

2. Your SDP from Part 1 should have an (n + 1) × (n + 1) decision variable. Show that
this dimension may be reduced to n×n without changing the value of the relaxation.

3. Explicitly give an optimal point of this reduced relaxation, as a function of S.

4. Now, repeat Parts 1 and 2 for the degree 2 Lasserre relaxation with constraints based
on Schmüdgen’s Positivstellensatz.

5. Give an example of S for which the upper bound given by the SDP from Part 4 is
strictly smaller than that given by the SDP from Part 2.

Problem 2 (One-dimensional optimization). Let p,q ∈ R[x] be univariate polynomials with
degp,degq ≤ d.

1. Describe an algorithm that uses SDP to compute the global minimum of p(x) based
on a Parrilo relaxation, that runs in polynomial time in d. Write the program your
algorithm solves as an explicit SDP with coefficients in terms of the coefficients of p.

2. Adjust your algorithm to do the same for the univariate rational function p(x)/q(x),
supposing q(x) has no real zeroes.
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Problem 3 (Nesterov’s approximation algorithm). In class we have discussed Gaussian round-
ing of SOS relaxations. Suppose we have a pseudoexpectation Ẽ, and we assume for the sake
of simplicity that Ẽ[x] = 0 for this problem. In Gaussian rounding, we then produce a point
y ∈ Rn by sampling y ∼ N (0, Ẽ[xx>]). In this problem we consider what happens if we
want instead to produce a point y ∈ {±1}n. The natural adjustment of Gaussian rounding
is to take

g ∼N (0, Ẽ[xx>]), (2)

yi := sgn(gi) for each i ∈ [n]. (3)

1. Show that, for each i, j ∈ [n],

E[yiyj] =
2
π

sin−1
(
Ẽ[xixj]

)
(4)

2. Prove the matrix inequality

E[yy>] � 2
π
Ẽ[xx>]. (5)

Use the Schur product theorem: if S,T � 0, then the matrix M with Mij = SijTij also
has M � 0.

3. Consider the little Grothendieck problem: given A � 0, we want to solve the optimiza-
tion

maximize x>Ax
subject to x ∈ {±1}n. (6)

Use the previous parts to describe a randomized polynomial-time 2
π -approximation

algorithm for this problem.1 Why doesn’t your algorithm give the same approximation
for arbitrary A?

Problem 4 (SOS proofs). Give SOS proofs of the following inequalities.

1. (AM-GM inequality) Prove that, for any n ≥ 1,

x2n
1 + · · · + x2n

n

n
− x2

1 · · ·x2
n ∈ SOS. (7)

To do this, let Sn denote the permutations of [n], and write σ(i) for i ∈ [n] and
σ ∈ Sn as the image of i under σ . Define pk(x) := 1

n!

∑
σ∈Sn x

2(n−k)
σ(1) x2

σ(2) · · ·x2
σ(2+k−1)

for k = 0, . . . , n− 1. Show that the left-hand side above is p0(x)− pn−1(x), and show
that pk−1(x)− pk(x) ∈ SOS for each k ∈ [n− 1].

1Note that MaxCut is a special case of the little Grothendieck problem, since any graph Laplacian is psd.
The Goemans-Williamson analysis for MaxCut uses special properties of graph Laplacians that we do not
use in the analysis outlined here, and by taking advantage of those gets the stronger 0.878+-approximation.
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2. (Gaussian moments) Prove that, for any n ≥ 1,

(2n)n‖x‖2n
2 − E

g∼N (0,I)
〈g,x〉2n ∈ SOS. (8)

Note that the second term should be viewed as a polynomial in x, and the expectation
is over g a random Gaussian vector with i.i.d. standard Gaussian entries. You will have
to compute the moments of these entries—use integration by parts and induction to
prove that Eg2k

i = (2k− 1)!! = 1 · 3 · 5 · · · (2k− 1).

3. (Triangle inequalities) Find qi(x) for i ∈ [3] and x = (x1, x2, x3) such that

x1x2 + x2x3 + x1x3 + 1 ∈ q1(x)(x2
1 − 1)+ q2(x)(x2

2 − 1)+ q3(x)(x2
3 − 1)+ SOS. (9)

Recall that these correspond to inequalities we included in the LP relaxation of MaxCut
that we talked about, but which were omitted from the Goemans-Williamson relax-
ation. This problem shows that a sufficiently high degree SOS relaxation (degree 4 will
suffice) does automatically satisfy these inequalities.

Problem 5 (Newton polytopes and Motzkin revisited). Recall the Motzkin polynomial,

f(x,y) = x4y2 + x2y4 + 1− 3x2y2. (10)

In class we gave a rather ad hoc proof that m ∉ SOS. In this exercise you will see a general
framework that helps with many such proofs.

To a monomial in (x1, . . . , xn), say xa1
1 · · ·x

an
n , we associate the vector (a1, . . . , an) ∈ Nn.

The Newton polytope of p ∈ R[x1, . . . , xn], denotedNp ⊂ Rn, is the convex hull of the vectors
associated to the monomials having non-zero coefficients in p. Note that Np only depends
on which monomials appear in p, not on their coefficients.

1. Suppose p(x) =
∑m
i=1 qi(x)2. Show that, for each i, Nqi is contained in 1

2Np.

Hint: Consider K the convex hull of all vectors associated to all monomials in all qi,
or equivalently the convex hull of all points in all of the Nqi . Note that vertices of some
of the Nqi might not be vertices of K. Show that if (a1, . . . , an) is a vertex of K, then
x2a1

1 · · ·x2an
n must appear with a strictly positive coefficient in p(x).

2. Draw Nf , the Newton polytope of the Motzkin polynomial, over the N2 grid. What
monomials can appear in the qi(x) in a hypothetical SOS expression for f ?

3. Using the restriction derived in Part 2, finish the proof that f ∉ SOS.

4. Suppose we are promised that p(x) ∈ SOS, and are interested in finding an explicit
SOS decomposition using SDP. Sketch how you could improve the efficiency of this
SDP using the properties of Newton polytopes. Roughly speaking, for high-degree
polynomials, what geometric quantity associated to the Newton polytope governs the
complexity of the improved SDP?
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