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I. Introduction



Our Question:

Are there efficient algorithms to certify bounds on
random optimization problems?

w



Main example:

M(W):= max x Wx

xe{x1}n

(including Sherrington-Kirkpatrick and other
Ising-type Hamiltonians, max-cut in graphs,
synchronization over 7Z/27, etc.)



General constrained PCA problem:
My (W) := max Tr(XTWX)
XeX

(including Potts and vector-spin Hamiltonians;
graph coloring; some CSPs; tensor, sparse,
positive, conic, and other PCAs; etc.)
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Search and Certification

Search: Compute x,g = X4 (W) with large value of
objective x;,,Wxag.
e Local (“greedy”) search (or Markov chains, simulated annealing)
e Projected power method (or AMP variants)
¢ Relax and round

Certification: Compute small c(W) € R that gives a bound
x"Wx < c(W) for all feasible x.

e LP relaxations (metric, Sherali-Adams, Loy asz-Schrijver)

e SDP relaxations (Goemans-Williamson, sum-of-squares/Lasserre)



Search and Certification: Objective Bounds

xj,gWxaﬂg < MW) < c(W)

search certification
lower upper

bounds bounds
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Average-Case Analysis
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Problem Instances
(e.g. graphs)
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Gaussian Instance Distribution

Take M(W) = maxxei-13n X" Wx, for random

Statistical physics tells us the true value:
lim [EM(W)/TL = ZP* ~ 1526, (“Parisi number”)
Nn—oo

ground state of the SK model. [sk '75; parisi '79; Guerra, Talagrand *00s]

Other reasons to care:
e Natural sparse random graph limit
[Boettcher, Zdeborova '10; Montanari, Sen ’16; Dembo, Montanari, Sen '17]
e Proof complexity of ground state bounds (will see later)
o Mean width of cut polytope conv({xx" : x € {£1}"})
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Searching for Hypercube in the GOE Spectrum

== Amax (W) - = 2n

= M(W) = 1.526n
A(W) > AMP ~ (1.526 — €)n [Montanari '18]

= round eigenvector ~ 1.273n [ALR ’87]

= greedy iteration ~ 1.064n [ALR ’87]

random guess = o(n)

Optimal search! And certification?
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Benchmark: The Spectral Certificate

The simplest way to bound M(W): ignore all special
structure in x, to get

M(W) = max x"Wx

xe{+1}n

< max x'Wx
[EIEND

= )\max(W) n
=~ 2N, (for

while a tight bound would give
< 1.526n.

Can we do better?



Certifying Hypercube in the GOE Spectrum
== Amax (W) - n = 2n
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Certifying Hypercube in the GOE Spectrum

= Amax(W) - n = 2n =

== M(W) = 1.526n

random guess = o(n)

SOS(2) [MS ’16]

Indirect evidence [BKW ’19]
SOS(4) [KB ’19, MRX "19]
SOS(6) [K’20]

SOS(w (1)) [GJJPR ’20]
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Certifying Hypercube in the GOE Spectrum

SOS(2) [MS ’16]

Indirect evidence [BKW ’19]
== Amax (W) - n =~ 2n = | SOS(4) [KB ’19, MRX '19]
SOS(6) [K’20]

SOS(w (1)) [GJJPR ’20]

= M(W) = 1.526n
A(W) > AMP ~ (1.526 — €)n [Montanari '18]

= round eigenvector ~ 1.273n [ALR ’'87]

= greedy iteration ~ 1.064n [ALR ’87]

random guess = o(n)

Optimal search, but spectral barrier to certification.



II. Computationally-Quiet Planting
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Lemma (Reduction): Can certify c(W) < (2 — €)n w.h.p. =
in same amount of time can test w.h.p. between:

1. Y ~ ©Q,, (null model),
2. Y ~ P, (alternative/planted model),

models of eigenspaces of W.



Implicit Hypothesis Testing [wsp 16, BKW '19]

Lemma (Reduction): Can certify c(W) < (2 — €)n w.h.p. =
in same amount of time can test w.h.p. between:

1. Y ~ ©Q,, (null model),
2. Y ~ P, (alternative/planted model),

models of eigenspaces of W.

Theorem (Hardness of Testing): The class of low-degree
polynomial algorithms fails to distinguish Q,, from P, . for
any € > 0.



Implicit Hypothesis Testing [wsp 16, BKW '19]

Lemma (Reduction): Can certify c(W) < (2 — €)n w.h.p. =
in same amount of time can test w.h.p. between:

1. Y ~ ©Q,, (null model),

2. Y ~ P, (alternative/planted model),

models of eigenspaces of W.

Theorem (Hardness of Testing): The class of low-degree
polynomial algorithms fails to distinguish Q,, from P, . for
any € > 0.

Corollary (Hardness of Certification): If low-degree
polynomial algorithms are optimal tests, then no algorithm
running in time exp(O (n'~9)) certifies c(W) < (2 — €)n.
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Reduction from Spiked Matrix Model

GOE bottom eigenspaces vs. avoiding x ~ Unif ({x1}"):
1. yl,...,yg ~ N(0,I) ~ GOE,
2. Y1y yn -~ N, I - %xxT) ~ spectrally-planted GOE.

This is a Wishart (negatively) spiked matrix model.

[Johnstone '01, BBAP '05, BS '06, ...] but negative case first appreciated by [PWBM ’18]

Gaussianity ~ can do explicit calculations to assess
difficulty of testing.

Similar versions for general setting: different or higher-rank
constraints X with random X near X.
[BBKMW ’20, BKW "20, Chapter 2 of thesis]
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Hard Regime for Testing? [8s 06, PWBM '18]

Natural test: “PCA” or threshold Aminimax (2. ¥;¥]).

2.5 B Impossible (contiguous)

B Inefficient MLE distinguishes
B Efficient PCA distinguishes

2.0

0.5

-1.0 -0.5 0.0 0.5 1.0
B

Better evidence of hardness than just PCA failure?
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Low-Degree Tests [HKPRSS 17, HS 17, Hopkins "18]

Take {low-degree polynomials} =~ {efficient algorithms},
and compute:

maximize <p, Z&>
subject to [|pll®> <1,
p € [R[Y]gD C LZ(Q'}’L)'

Optimizer: the (normalized) low-degree likelihood ratio

D ar,
dQy,

d PVI,
d Q n

objective value

p*(Y) =P~ )

(Y) / HT<D

Conjecture: Cannot test in time e0DM) jf objective = O(1).
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New evidence for hard or subexponential regimes in:

e Dense matrix PCA (Wigner/Wishart, rank k, many priors) [BKW '19]

¢ One special non-Gaussian dense matrix PCA [K 20]
e Sparse matrix PCA (rank 1, many priors) [DKWB '19]
e Tensor PCA (many priors) [KWB ’19]
e Stochastic block model [BBKMW '20]



Low-Degree Lower Bounds

New evidence for hard or subexponential regimes in:

¢ Dense matrix PCA w igner/Wishart, rank k, many priors) [BKW’
¢ One special non-Gaussian dense matrix PCA K’
. Sparse matrix PCA (ank 1, many priors) [DKWB’
e Tensor PCA (many priors) [KWB’
¢ Stochastic block model [BBKMW .

From Wishart models + reduction, conclude conditional
hardness of better-than-spectral certification in:

e SK Hamiltonian (“Gaussian max-cut”) [BKW
e Potts glass Hamiltonian (“Gaussian coloring”) (ssxvw
¢ Positive PCA (“Gaussian max-clique”) [BKW

'19]
'20]

20]
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Unified Proofs from Overlap Formulae

Algebraic simplification of orthogonal polynomials method:
when in planted P,, we observe noisy signal X (e.g. = xx7),

2 AP, \ 2 D
= D <qa,"> < E D car(XX?%)4
l&x|<D dQn X\X2 52

aP,
dQn

rJ)SD

Reduce to contest of low-dimensional replica overlap
r(X1,X?) tails vs. link function f(t) = >.7_, cat? growth.

Model Overlap Link Function

Gaussian Wigner (X1, X2) exp(t)
Morris Exp. Families (z(X!), z(X?2)) (1 —vt) v
Gaussian Wishart X1X?2 det(I — T) "2y




III. Sum-of-Squares Lower Bounds
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analysis without exact law of eigenvectors.



State of Affairs So Far

Reduction + low-degree analysis ~ evidence of no efficient
better-than-spectral certification algorithm.
What more could we want?

1. W ~ something other than GOE(n); in particular,
analysis without exact law of eigenvectors.

2. Concrete lower bounds rather than “evidence”
conditional on conjecture re: low-degree polynomials.
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Sum-of-Squares Relaxations [parrilo '00, Lasserre 01]

A way to design increasingly powerful semidefinite
programming relaxations of M(W) = maxyei+1;n X Wx.

max E[xTWx]

min c

st. [ Rix1,...,Xnl<p = R s.t. ¢c—x"Wx
T linear =Yipi(x)(xF —1)
E[11=1 +;55(x)?
E[(x! - Dp(x)]1=0 degpi <D -2
E[s(x)2]1=0 degs; <D/2
pseudoe;;ectation, sum-of—squ;es prover,
imposter, detective,

charlatan,

tester,

Pay runtime of n®® for flexibility of degree D proofs.
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Pseudocalibration [vw 13, BHKKMP '16]

To give a lower bound, need E[xTWx] =

Choosing E = choosing each E[xil -+ - X, ], starting with
E[xx"] oc projector to of W. w=2ms"16)

Use planted distribution (“x € V. n {£1}"™”) to determine
these, entry by entry. Only difficulty: proving positivity.

Question: Whose Gram matrices are these large structured
psd matrices? How to make more explicit these geometric
objects underlying SOS lower bounds?
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Spectral Extensions [BK'18,KB’19, K 20]
Probabilistic viewpoint: use surrogate random tensors,
E[xlx_]] = [E[Gid)G;d)] - uG(d) — x@du

Make G as random as possible under constraints—give it
a canonical Gaussian distribution conditional on:

GY =1 - x®0=(1)

G\ = Xip o Xig = Xrein) * Xn(ig)
G(dl)ll dd—2 Giﬁ--f)d—z - X"lz'xi = x'

(G;”?1 iy 1)?=1 ev - XX, X€EV

for V top eigenspace of W.
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Multiharmonic projections ~ Green’s function
representation gives diagrammatic expressions. [Maxwell 1873]
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The Surprises of Spectral Extensions

With homogeneous polynomials ~ ideal generated by
(Pye;, z)? and multiharmonic polynomials (Pye;, 9)°p = 0.

Multiharmonic projections ~ Green’s function
representation gives diagrammatic expressions. [Maxwell 1873]

~ identities “explaining”
compatibility of positivity and entry symmetries.

ElxixjxkxpxmXxp] = sum of expressions of the form

N N ek

n n
Pijpképmp Pij Z PukPa[PamPup Z PoziPz,ijakPube(@Pmebp

a=1 a,b=1
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Results on Sum-of-Squares

With spectral extensions:

e Deterministic analysis of degree 4 feasible set [BK "18]
e Degree 4 lower bound for SK Hamiltonian [KB '19]
e Towards higher-degree lower bounds: [K '20]

— Degree 6 lower bound for SK Hamiltonian
— Degree w (1) for incoherent high-rank projector

° Spectrum of parity E [Grigoriev ’01, Laurent '03, BKM '21]

Meanwhile, with pseudocalibration:
e Degree 4 lower bound for SK Hamiltonian [MRX 19]
e Degree w (1) lower bound for SK Hamiltonian
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Some Future Directions

Low-degree method beyond “integrable” models

Connection with statistical physics via overlaps

Combinatorial manifestations of spectral planting

Spectra and Gramian structure of pseudoexpectations

Pseudocalibration reconciliation

Proof systems for spin glasses—replicated SOS? [rS 00]



Thank you!



