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I. Introduction
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Our Question:

Are there efficient algorithms to certify bounds on

random optimization problems?
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Main example:

M(W) := max
x∈{±1}n

x>Wx

(including Sherrington-Kirkpatrick and other

Ising-type Hamiltonians, max-cut in graphs,

synchronization over Z/2Z, etc.)
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General constrained PCA problem:

MX(W) := max
X∈X

Tr(X>WX)

(including Potts and vector-spin Hamiltonians;

graph coloring; some CSPs; tensor, sparse,

positive, conic, and other PCAs; etc.)
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Search and Certification

Search: Compute xalg = xalg(W) with large value of
objective x>algWxalg.

• Local (“greedy”) search (or Markov chains, simulated annealing)

• Projected power method (or AMP variants)

• Relax and round

Certification: Compute small c(W) ∈ R that gives a bound
x>Wx ≤ c(W) for all feasible x.

• LP relaxations (metric, Sherali-Adams, Lovász-Schrijver)

• SDP relaxations (Goemans-Williamson, sum-of-squares/Lasserre)
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Search and Certification: Objective Bounds

x>algWxalg ≤ M(W) ≤ c(W)

search certificationxy xy
lower upper

bounds bounds
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Gaussian Instance Distribution

Take M(W) = maxx∈{±1}n x>Wx, for random W ∼ GOE(n).

Statistical physics tells us the true value:

lim
n→∞EM(W)/n = 2P∗ ≈ 1.526, (“Parisi number”)

ground state of the SK model. [SK ’75; Parisi ’79; Guerra, Talagrand ’00s]

Other reasons to care:

• Natural sparse random graph limit
[Boettcher, Zdeborová ’10; Montanari, Sen ’16; Dembo, Montanari, Sen ’17]

• Proof complexity of ground state bounds (will see later)

• Mean width of cut polytope conv({xx> : x ∈ {±1}n})
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Searching for Hypercube in the GOE Spectrum
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Searching for Hypercube in the GOE Spectrum
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Searching for Hypercube in the GOE Spectrum

Optimal search! And certification?
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Benchmark: The Spectral Certificate

The simplest way to bound M(W): ignore all special
structure in x, to get

M(W) = max
x∈{±1}n

x>Wx

≤ max
‖x‖=√n

x>Wx

= λmax(W) ·n
≈ 2n, (for W ∼ GOE(n))

while a tight bound would give

Ü 1.526n.

Can we do better?

15



Benchmark: The Spectral Certificate

The simplest way to bound M(W): ignore all special
structure in x, to get

M(W) = max
x∈{±1}n

x>Wx

≤ max
‖x‖=√n

x>Wx

= λmax(W) ·n
≈ 2n, (for W ∼ GOE(n))

while a tight bound would give

Ü 1.526n.

Can we do better?

15



Benchmark: The Spectral Certificate

The simplest way to bound M(W): ignore all special
structure in x, to get

M(W) = max
x∈{±1}n

x>Wx

≤ max
‖x‖=√n

x>Wx

= λmax(W) ·n
≈ 2n, (for W ∼ GOE(n))

while a tight bound would give

Ü 1.526n.

Can we do better?

15



Benchmark: The Spectral Certificate

The simplest way to bound M(W): ignore all special
structure in x, to get

M(W) = max
x∈{±1}n

x>Wx

≤ max
‖x‖=√n

x>Wx

= λmax(W) ·n
≈ 2n, (for W ∼ GOE(n))

while a tight bound would give

Ü 1.526n.

Can we do better?

15



Certifying Hypercube in the GOE Spectrum
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Certifying Hypercube in the GOE Spectrum
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Certifying Hypercube in the GOE Spectrum

Optimal search, but spectral barrier to certification.
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II. Computationally-Quiet Planting
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Implicit Hypothesis Testing [WBP ’16, BKW ’19]

Lemma (Reduction): Can certify c(W) ≤ (2− ε)n w.h.p. ⇒
in same amount of time can test w.h.p. between:

1. Y ∼ Qn (null model),

2. Y ∼ Pn,ε (alternative/planted model),

models of eigenspaces of W .

Theorem (Hardness of Testing): The class of low-degree
polynomial algorithms fails to distinguish Qn from Pn,ε for
any ε > 0.

Corollary (Hardness of Certification): If low-degree
polynomial algorithms are optimal tests, then no algorithm
running in time exp(O(n1−δ)) certifies c(W) ≤ (2− ε)n.
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Reduction from Spiked Matrix Model
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Reduction from Spiked Matrix Model

GOE bottom eigenspaces vs. avoiding x ∼ Unif({±1}n):
1. y1, . . . ,y n

γ
∼N (0, I)� GOE,

2. y1, . . . ,y n
γ
∼N (0, I − β

nxx
>)� spectrally-planted GOE.
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Reduction from Spiked Matrix Model

GOE bottom eigenspaces vs. avoiding x ∼ Unif({±1}n):
1. y1, . . . ,y n

γ
∼N (0, I)� GOE,

2. y1, . . . ,y n
γ
∼N (0, I − β

nxx
>)� spectrally-planted GOE.

This is a Wishart (negatively) spiked matrix model.
[Johnstone ’01, BBAP ’05, BS ’06, ...] but negative case first appreciated by [PWBM ’18]

Gaussianity � can do explicit calculations to assess
difficulty of testing.

Similar versions for general setting: different or higher-rank
constraints X with random X near X.
[BBKMW ’20, BKW ’20, Chapter 2 of thesis]
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Hard Regime for Testing? [BS ’06, PWBM ’18]

Natural test: “PCA” or threshold λmin|max(
∑
yiy

>
i ).

−1.0 −0.5 0.0 0.5 1.0
β

0.0

0.5

1.0

1.5

2.0

2.5

γ

Impossible (contiguous)

Inefficient MLE distinguishes

Efficient PCA distinguishes

Better evidence of hardness than just PCA failure?
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Low-Degree Tests [HKPRSS ’17, HS ’17, Hopkins ’18]
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Low-Degree Tests [HKPRSS ’17, HS ’17, Hopkins ’18]

Take {low-degree polynomials} ≈ {efficient algorithms},
and compute:

maximize EPn p(Y)
subject to EQnp(Y)2 ≤ 1,

p(Y) ∈ R[Y]≤D.

21



Low-Degree Tests [HKPRSS ’17, HS ’17, Hopkins ’18]

Take {low-degree polynomials} ≈ {efficient algorithms},
and compute:

maximize
〈
p, dPndQn

〉
subject to ‖p‖2 ≤ 1,

p ∈ R[Y]≤D ⊂ L2(Qn).

21



Low-Degree Tests [HKPRSS ’17, HS ’17, Hopkins ’18]

Take {low-degree polynomials} ≈ {efficient algorithms},
and compute:

maximize
〈
p, dPndQn

〉
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Optimizer: the (normalized) low-degree likelihood ratio
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p?(Y) = P≤D dPn
dQn

(Y)
/ ∥∥∥∥P≤D dPndQn

∥∥∥∥︸ ︷︷ ︸
objective value

.

Conjecture: Cannot test in time eÕ(D(n)) if objective = O(1).
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Low-Degree Lower Bounds

New evidence for hard or subexponential regimes in:

• Dense matrix PCA (Wigner/Wishart, rank k, many priors) [BKW ’19]

• One special non-Gaussian dense matrix PCA [K ’20]

• Sparse matrix PCA (rank 1, many priors) [DKWB ’19]

• Tensor PCA (many priors) [KWB ’19]

• Stochastic block model [BBKMW ’20]

From Wishart models + reduction, conclude conditional
hardness of better-than-spectral certification in:

• SK Hamiltonian (“Gaussian max-cut”) [BKW ’19]

• Potts glass Hamiltonian (“Gaussian coloring”) [BBKMW ’20]

• Positive PCA (“Gaussian max-clique”) [BKW ’20]
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Unified Proofs from Overlap Formulae

Algebraic simplification of orthogonal polynomials method:
when in planted Pn we observe noisy signal X̃ (e.g. = xx>),∥∥∥∥P≤D dPndQn

∥∥∥∥2

=
∑
|α|≤D

〈
qα,

dPn
dQn

�2

≤ E
X̃ 1,X̃ 2

D∑
d=0

cdr(X̃ 1,X̃ 2)d

Reduce to contest of low-dimensional replica overlap
r(X̃ 1,X̃ 2) tails vs. link function f(t) =∑∞d=0 cdtd growth.

Model Overlap Link Function

Gaussian Wigner 〈X̃ 1,X̃ 2〉 exp(t)

Morris Exp. Families 〈z(X̃ 1),z(X̃ 2)〉 (1− vt)−1/v

Gaussian Wishart X̃ 1X̃ 2 det(I − T )−n/2γ
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III. Sum-of-Squares Lower Bounds
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State of Affairs So Far

Reduction + low-degree analysis � evidence of no efficient
better-than-spectral certification algorithm.

What more could we want?

1. W ∼ something other than GOE(n); in particular,
analysis without exact law of eigenvectors.

2. Concrete lower bounds rather than “evidence”
conditional on conjecture re: low-degree polynomials.
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Sum-of-Squares Relaxations [Parrilo ’00, Lasserre ’01]

A way to design increasingly powerful semidefinite
programming relaxations of M(W) = maxx∈{±1}n x>Wx.

max Ẽ[x>Wx]
s.t. Ẽ : R[x1, . . . , xn]≤D → R

Ẽ linear

Ẽ[1] = 1

Ẽ[(x2
i − 1)p(x)] = 0

Ẽ[s(x)2] ≥ 0︸ ︷︷ ︸
pseudoexpectation,

imposter,
charlatan,

...

=

min c
s.t. c − x>Wx

=∑ipi(x)(x2
i − 1)

+∑j sj(x)2
degpi ≤ D − 2

deg sj ≤ D/2︸ ︷︷ ︸
sum-of-squares prover,

detective,
tester,

...

Pay runtime of nΘ(D) for flexibility of degree D proofs.
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Ẽ[s(x)2] ≥ 0︸ ︷︷ ︸
pseudoexpectation,

imposter,
charlatan,

...

=

min c
s.t. c − x>Wx

=∑ipi(x)(x2
i − 1)

+∑j sj(x)2
degpi ≤ D − 2

deg sj ≤ D/2︸ ︷︷ ︸
sum-of-squares prover,

detective,
tester,

...

Pay runtime of nΘ(D) for flexibility of degree D proofs.

26



Sum-of-Squares Relaxations [Parrilo ’00, Lasserre ’01]

A way to design increasingly powerful semidefinite
programming relaxations of M(W) = maxx∈{±1}n x>Wx.

max Ẽ[x>Wx]
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A way to design increasingly powerful semidefinite
programming relaxations of M(W) = maxx∈{±1}n x>Wx.

max Ẽ[x>Wx]
s.t. Ẽ : R[x1, . . . , xn]≤D → R

Ẽ linear

Ẽ[1] = 1

Ẽ[(x2
i − 1)p(x)] = 0

Ẽ[s(x)2] ≥ 0︸ ︷︷ ︸
pseudoexpectation,

imposter,
charlatan,

...

=

min c
s.t. c − x>Wx

=∑ipi(x)(x2
i − 1)

+∑j sj(x)2
degpi ≤ D − 2

deg sj ≤ D/2︸ ︷︷ ︸
sum-of-squares prover,

detective,
tester,

...

Pay runtime of nΘ(D) for flexibility of degree D proofs.
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Pseudocalibration [MW ’13...BHKKMP ’16]

To give a lower bound, need Ẽ[x>Wx] =.

Choosing Ẽ = choosing each Ẽ[xi1 · · ·xiD], starting with
Ẽ[xx>]∝ projector to top eigenspace V of W . (D = 2 [MS ’16])

Use planted distribution (“x ∈ V ∩ {±1}n”) to determine
these, entry by entry. Only difficulty: .

Question: Whose Gram matrices are these large structured
psd matrices? How to make more explicit these geometric
objects underlying SOS lower bounds?
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Choosing Ẽ = choosing each Ẽ[xi1 · · ·xiD], starting with
Ẽ[xx>]∝ projector to top eigenspace V of W . (D = 2 [MS ’16])

Use planted distribution (“x ∈ V ∩ {±1}n”) to determine
these, entry by entry. Only difficulty: proving positivity.

Question: Whose Gram matrices are these large structured
psd matrices? How to make more explicit these geometric
objects underlying SOS lower bounds?
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Spectral Extensions [BK ’18, KB ’19, K ’20]

Probabilistic viewpoint: use surrogate random tensors,

Ẽ[xixj] := E[G(d)i G(d)j ] ↔ “G(d) = x⊗d”

Make G(d) as random as possible under constraints—give it
a canonical Gaussian distribution conditional on:

G(0)∅ = 1 ↔ x⊗0 = (1)
G(d) symmetric ↔ xi1 · · ·xid = xπ(i1) · · ·xπ(id)
G(d)j,j,i1,...,id−2

= G(d−2)
i1,...,id−2

↔ x2
jxi = xi

(G(d)j,i1,...,id−1
)nj=1 ∈ V ↔ xi1 · · ·xid−1x ∈ V

for V top eigenspace of W .
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The Surprises of Spectral Extensions
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The Surprises of Spectral Extensions

With homogeneous polynomials � ideal generated by
〈PVei,z〉2 and multiharmonic polynomials 〈PVei,∂〉2p = 0.

Multiharmonic projections � Green’s function
representation gives diagrammatic expressions. [Maxwell 1873!]

Ẽ[xixjxkx`xmxp] = sum of expressions of the form

PijPk`Pmp Pij
n∑
a=1

PakPa`PamPap
n∑

a,b=1

PaiPajPakPabPb`PbmPbp

29



The Surprises of Spectral Extensions

With homogeneous polynomials � ideal generated by
〈PVei,z〉2 and multiharmonic polynomials 〈PVei,∂〉2p = 0.

Multiharmonic projections � Green’s function
representation gives diagrammatic expressions. [Maxwell 1873!]

Möbius function coefficients � identities “explaining”
compatibility of positivity and entry symmetries.

Ẽ[xixjxkx`xmxp] = sum of expressions of the form

PijPk`Pmp Pij
n∑
a=1

PakPa`PamPap
n∑

a,b=1

PaiPajPakPabPb`PbmPbp

1 −2 4
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Results on Sum-of-Squares

With spectral extensions:

• Deterministic analysis of degree 4 feasible set [BK ’18]

• Degree 4 lower bound for SK Hamiltonian [KB ’19]

• Towards higher-degree lower bounds: [K ’20]

− Degree 6 lower bound for SK Hamiltonian
− Degree ω(1) for incoherent high-rank projector

• Spectrum of parity Ẽ [Grigoriev ’01, Laurent ’03, BKM ’21]

Meanwhile, with pseudocalibration:

• Degree 4 lower bound for SK Hamiltonian [MRX ’19]

• Degree ω(1) lower bound for SK Hamiltonian [GJJPR ’20]
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Some Future Directions

• Low-degree method beyond “integrable” models

• Connection with statistical physics via overlaps

• Combinatorial manifestations of spectral planting

• Spectra and Gramian structure of pseudoexpectations

• Pseudocalibration reconciliation

• Proof systems for spin glasses—replicated SOS? [RS ’00]
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Thank you!
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