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1 Introduction

The method of ’postulating’ what we want has many advantages; they are the
same as the advantages of theft over honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

1.1 The Problem of Selection

The problem of selection, in its most general formulation, is that of making many
simultaneous choices from an indexed collection of sets of options: for sets X,Y and
a subset A ✓ X⇥Y (in this kind of setting we will often appeal to visual intuition and
call A a planar set), we write A(x) for the section of A over x,

A(x) = {y 2 Y | (x,y) 2 A}.

Thus, we view A as a parametrized sequence of subsets of Y (we will later introduce
multifunctions, which make this viewpoint more explicit). If each A(x) is non-empty,
then the Axiom of Choice guarantees that there is a function f : X ! Y such that
for all x 2 X, f(x) 2 A(x). That is, f “selects” one value from A(x) for each x; we
call any such function a selection of A, and we call its graph Gr(f ) (as a planar set)
a uniformization of A. We will also sometimes refer to A as the choice set. In prac-

Figure 1: A choice set and a selection function.

tice, the existence of an arbitrary selection alone is often insufficient. In particular,
the Axiom of Choice is agnostic to regularity in the parametrization of A: perhaps
there is some relationship between A(x) for different x that we want the selection to
respect. Thus, it is typically preferable to have a selection satisfying some regularity
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property as a function, such as smoothness, continuity, or measurability (or to have
a uniformization satisfying some regularity property as a set; this touches upon the
issue of connecting the regularity of a function to the regularity of its graph, which
we will return to later).

The theory of selection can then be seen as providing a “finer” or “more effective”
version of the Axiom of Choice, where the central question addressed is: given a
desirable property for f , what conditions on A guarantee the existence of a selection
having that property? Of interest to us is the theory of measurable selection, which
studies this question where the desirable property for f is measurability when X

and Y are measurable spaces. Problems fitting into the selection framework arise in
many ways; it will be useful to have a few simple examples in mind as we describe
the surrounding machinery.

Example 1.1.1. One of the more basic selection problems is that of finding a left
inverse to a surjective function f : X % Y . This amounts to finding g : Y ! X that is
a selection from the graph Gr(f ), viewed “sideways” as a subset of Y ⇥X. Regularity
properties on f as a function translate to regularity properties on Gr(f ), e.g. when X
and Y are topological spaces, continuity of f implies that Gr(f ) is closed (we will later
discuss versions of this fact assuming measurability conditions instead of continuity
for f ). Thus, showing that regularity of Gr(f ) implies the existence of a regular
selection would give us a corresponding left inverse existence theorem (the inverse
regularity is rarely as strong as we might wish; the most basic example of such a
limitation is that continuous functions need not have continuous left inverses).

Example 1.1.2. In game theory, a player’s strategy can be represented as a selection
from a collection of sets of available actions, each in response to some signal such
as a history of previous turns. In this case, the external signal is coded in X, and
the possible actions in Y . A strategy is a choice of action in response to all possible
ensembles of external information, and thus a selection on some subset of X⇥Y (we
constrain this subset somehow, often by some optimality condition that the strategy
must attain—for instance, there may be a utility function on X ⇥ Y that we want
to maximize, perhaps within some margin of error, as in the setting of the exact
selection theorem in [4], which we will treat later).

1.2 The Metamathematical Simplification

Proving the existence of a measurable or otherwise regular selection function fre-
quently involves fairly elaborate arguments that take extensive advantage of the par-
ticular structure of the sets involved. For example, we will look later at constructing,
given a function f : A ! R on the choice set A, measurable selections of A whose
points come close to minimizing or maximizing f on each A(x) (the exact selection
theorem mentioned above). It seems a priori that constructing such a selection would
require working extensively with the metric properties of the A(x) and the function
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f , and this is indeed the approach typically taken in practice. And, measurable selec-
tion theorems often arise even more heavily contextualized by the application they
are required for, in which case it is common for their proofs to use technical results
and methods from the field of application to establish, say, the measurability of a
selection function by establishing the measurability of certain inverse image sets,
which may themselves have some independent domain-specific significance.

This sort of approach is effective but somewhat unsatisfying, for two primary
reasons: firstly, modern descriptive set theory is typically conducted in the setting of
Polish spaces, separable complete metric spaces whose metric has been “forgotten”,
the general accumulated philosophy of the field dictating that it is the topology of a
Polish space that we should be working with as much as possible, not any particular
concrete metrics that realize that topology. And, perhaps more importantly, results
in modern set theory suggest that Lebesgue measurability (and the closely-related
notion of universal or absolute measurability which we will work with later) of con-
structively defined sets encountered “in the wild” is, with the aid of enough extra
foundational assumptions, something of a non-issue. The title of a well-known paper
of Shelah and Woodin expresses this sentiment concisely: Large cardinals imply that
every reasonably definable set of reals is Lebesgue measurable [21].

What this body of results means in practical terms is that when one encounters
a set that is constructively defined (i.e. without the Axiom of Choice but rather say
with just first-order quantifications), then if one is willing to assume the existence of
sufficiently large cardinals, there is no need to do anything more to show that this
set is measurable (in the Lebesgue or universal sense)—the very fact that the set is
constructively defined ensures that measurability already.

Our goal here is to demonstrate that the same sort of simplification is possible
for claims about the existence of measurable selections: we will see that the work of
Shelah and Woodin along with some other metamathematical tools essentially imply
that, assuming the existence of certain large cardinals, every “reasonably definable”
planar subset of a Polish space has a Lebesgue measurable (or universally measur-
able) selection. We will illustrate by way of example how many results on measurable
selections (or slightly weakened versions of these results) can be proven more easily
and in a more uniform and systematic fashion by making these large cardinal as-
sumptions and invoking some additional powerful results from set theory. We will
also see that in practice, a relatively modest large cardinal assumption suffices for
most of these arguments, namely the existence of a measurable cardinal.

1.3 Aside: On Interfacing Analysis and Descriptive Set Theory

There is a difficulty one inevitably encounters in trying to provide a lucid exposition
of our subject matter, which is that the two kinds of objects whose relationship we
are interested in—measurable spaces and measurable functions on them in analysis
on the one hand, and large cardinals in set theory on the other—have a great deal of
common theoretical ancestry, but are very far apart indeed on the map of modern
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mathematics as the average practitioner would draw it. The standard deftly-executed
exposition of measure theory, for instance, gets by with a brief mention of the Axiom
of Choice; from the perspective of introductory set theory, the Borel sets can be
made to seem like their relevance consists purely in demarcating a natural complexity
bound on subsets of infinite binary strings. That upon abandoning the Axiom of
Choice one can find models of ZF in which every subset of R is Lebesgue measurable
is a standalone folkloric trivium as far as practical analysis is concerned; in the set-
theoretic context, “continuum” is a cardinal number devoid of geometric significance,
and Lebesgue measurability in descriptive set theory is effectively little more than a
regularity benchmark for subsets of R (which is why it is readily interchangeable
in most set-theoretic results concerning it with many other properties, such as the
perfect set property, the Baire property, universal measurability, and so forth).

This divide is unfortunate for us, because we are interested in precisely those
theoretical domains where higher set theory and analysis can be observed causally
jostling each other. Such cases are in fact plentiful, but the bearing of descriptive set
theory on a given analytic problem is often quite opaque at first. Responsible for this
are mostly linguistic and traditional differences: logicians prefer to talk about selec-
tions in terms of uniformizations (i.e. about the complexity of a selection function’s
graph as a set instead of the selection function as a mapping) while applications in
analysis almost always framed in terms of selection functions, the machinery of de-
scriptive set theory in practice analyzes the complexity of a definition in terms of
the quantifiers involved (and economical use of quantifiers in writing a definition can
be of the essence in obtaining effective complexity bounds) while in analysis quanti-
fiers are little more than shorthand, etc. Some of our time will thus be spent stolidly
translating between these two languages. To some extent though, that each problem
we consider can be reduced to a rote calculation of complexities is the very quality
of these problems that is on display here: we wish to demonstrate that a large class
of analytic selection problems can basically be trivialized (or at least reduced to a
mechanical and prescribed verification process) by a set-theoretic assumption.

Out project could thus reasonably be viewed as belonging to an undercurrent
in modern mathematical logic towards finding “natural” or “concrete” statements
in ordinary mathematics (i.e. statements having nothing to do with set theory or
Gödel numbers of propositions or anything of that sort) whose truth still depends on
assumptions independent of ZFC, such as large cardinals. (This mission statement is
perhaps championed most vocally by Harvey Friedman, see e.g. [9] and [10].) Those
statements, however, most often belong to combinatorics or number theory. Part
of our motivation here is to contribute (minorly) to this program through problems
with an analytic rather than a discrete flavor. Our contribution, it should also be
noted, is in a slightly different spirit—instead of finding statements whose truth is
contingent on independent assumptions, we exhibit statements whose ease of proof
has this same contingency (this is, of course, still firmly in the vein of demonstrating
that large cardinal axioms have concrete and practical ramifications).
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2 Background

2.1 Complexity Hierarchies in Polish Spaces

As mentioned above, we pursue the question of measurable selection in the mod-
ern context of Polish spaces. The Polish spaces that will occur most often (and to
which measurable selection theorems, particularly older results, will frequently be
explicitly restricted, rather than generalizing to arbitrary Polish spaces) are R with
its usual topology, ! with the discrete topology, !! (the Baire space) with the prod-
uct topology arising from the discrete topology on !, and 2! (the Cantor space)
with the product topology arising from the discrete topology on 2 = {0,1}. Another
important example that will be useful occasionally is the space C(X) of continuous
functions f : X ! Y where X is a compact Polish space and Y is an arbitrary Polish
space, endowed with the supremum metric, dC(X)(f , g) = supx2X dY(f(x), g(x)) (it
is an easy exercise to verify that this is indeed again a Polish space). A final basic key
fact is that countable products of Polish spaces are also Polish; hence, in particular,
countable products of various collections of the above spaces are also Polish.

We will make use of the notion of pointclasses in Polish spaces as defined in [19],
and we will adopt the following additional notations:

• For � a pointclass and X a Polish space, �(X) denotes the subsets of X belonging
to � .

• ¬� denotes the pointclass of sets whose complements belong to � .

• Unions, intersections, and subset relations on pointclasses are defined in the
obvious way.

The pointclasses we will be primarily concerned with are the Borel pointclasses ⌃0
↵,

⇧0
↵, and �0

↵, and the projective pointclasses ⌃1
↵, ⇧1

↵, and �1
↵ where ↵ ranges over

countable ordinals (the definitions of these standard notations can be found in [19]).
We also write B for the pointclass of all Borel sets (by a classical result equal to �1

1).
The notation of quantification over Polish spaces for sets and pointclasses will also
be useful.

Definition 2.1.1. For X,Y Polish spaces and A ✓ X ⇥ Y , we write

9YA = {x 2 X : (9y 2 Y)((x,y) 2 A)} = ⇡X(A),
8YA = {x 2 X : (8y 2 Y)((x,y) 2 A)} = (9YAc)c.
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For a pointclass � , we write

9Y � = {9YA : A 2 �(X ⇥ Y) for a Polish space X}
= {⇡X(A) : X a Polish space, A 2 �(X ⇥ Y)},

8Y � = {8YA : A 2 �(X ⇥ Y) for a Polish space X}
= ¬(9Y¬�).

Quantification over ! is closely related to the structure of the Borel hierarchy, and
quantification over !! is closely related to the structure of the projective hierarchy,
as illustrated by the following structural results.

Proposition 2.1.2. For all 0 < ↵ <!1:

• ⌃0
↵ is closed under 9! and ⇧0

↵ is closed under 8!.

• 9!⇧0
↵ = ⌃0

↵+1 and 8!⌃0
↵ = ⇧0

↵+1.

Proposition 2.1.3. For all 0  ↵ <!1:

• ⌃1
↵ is closed under 9!!

and ⇧1
↵ is closed under 8!!

.

• ⌃1
↵+1 = 9!

!⇧1
↵ and ⇧1

↵+1 = ¬⌃1
↵+1 = 8!

!⌃1
↵.

These facts are useful for determining the descriptive complexity of subsets of Polish
spaces in practice, where the defining property of a subset can typically be written
in terms of such quantifiers over other Polish spaces, which allows the Borel or pro-
jective complexity of the subset to be read directly from its definition. An exposition
of this perspective can be found in the first section of [19]. We will liberally blur the
distinction between pointclasses and the definability properties that they represent,
using terminology such as “a Borel condition” or “a ⇧1

1 condition” to indicate the
complexity of the set of points that satisfy the condition in question.

2.2 Heuristic Digression: Complexity vs. Regularity

Our methods largely rely on the possibility of exploiting the relationship between
two types of “simplicity” properties or conditions for subsets of Polish spaces, and
it will be useful to establish this distinction in heuristic terms before proceeding. Let
X be a Polish space.

We call complexity conditions on a subset A ✓ X those conditions that bound
where A is located in one of the above hierarchies (Borel or projective), which in
practice corresponds to the quantifier complexity of a proposition � whose truth
determines whether a point belongs to A or not. A salient feature of complexity con-
ditions is that they are unchanged by any reasonable additional metamathematical
assumptions: the location of A in the boldface hierarchies depends exclusively on its
definition and the formal structure of the proposition �.
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We call regularity conditions onA ✓ X those conditions such as Lebesgue measur-
ability, universal measurability (defined in the following section), the Baire property,
the perfect set property, and so forth, which make claims of the form “A contains a
nice set” or “A is almost a nice set” for some interpretations of “almost” and “nice”.
What is relevant for our purposes about these conditions is that they are very much
predicated on metamathematical assumptions: enough large cardinals or enough
projective determinacy will make any projective A have all of the above properties,
and the full Axiom of Determinacy will make any A at all (not necessarily projective)
have all of the above properties, while the Axiom of Choice implies that there do exist
subsets A of Polish spaces not having these properties (by constructions such as that
of the Vitali sets).

Regular sets are not restricted in complexity—sets with any of the above regu-
larity properties can be found at any level of the projective hierarchy. On the other
hand, irregular sets are restricted in complexity, and the severity of the restriction
depends on what axioms we use beyond ZFC: we will always have some result of the
form that there are no irregular sets in � 1

↵ for all ↵ < ↵0 (for � either ⌃ or ⇧), and the
bound ↵0 will grow proportionally to the strength of the large cardinal assumption
that we make. Hence, our approach, in broad strokes, is to take measurable selec-
tion theorems that impose complexity constraints on their measurable selections (i.e.
complexity constraints on f�1

(B) where f is the selection and B is Borel), to weaken
these to instead make reference to regularity conditions, and then to ensure the sat-
isfaction of these regularity conditions with a large cardinal assumption.

2.3 Notions of Measurability

As the preceding discussion indicates, we will deal with two fundamentally different
types of measurability: measurability with respect to some projective pointclass � ,
and measurability with respect to some class of regular sets such as the Lebesgue
measurable or universally measurable sets. We introduce these ideas in this section.

2.3.1 The Projective � -Algebras

Measurability with respect to projective complexity classes requires us to consider
the � -algebra generated by a projective pointclass � , which we denote by the stan-
dard �(�). Note that measurability (Lebesgue or universal) for � implies the same
measurability for �(�), so such measurability results will extend to the correspond-
ing � -algebras immediately.

We briefly establish some facts about the � -algebras generated by the projec-
tive pointclasses: recall that ⌃1

↵ and ⇧1
↵ are both closed under countable union and

intersection, thus all that prevents them from already themselves being � -algebras
is closure under complementation. Since these two pointclasses consist of one an-
other’s complements, we clearly have �(⌃1

↵) = �(⇧1
↵). Let us denote this � -algebra

by � 1
↵. The pointclass �1

↵, on the other hand, is closed under countable unions and
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intersections as well as complements, so it already forms a � -algebra. Thus, the
projective � -algebras consist of the � 1

↵ and the �1
↵.

Frequently, the more general measurable selection theorems will be formulated
over the domain of a general measurable space, i.e. a set ⌦ equipped with an arbitrary
� -algebra. We cannot handle this level of generality in the context of Polish spaces,
so we will define here a suitable set of � -algebras with which to replace such general
conditions (in practice, it is rare that an application of one of these theorems is not
over a Polish space).

Definition 2.3.1. A Borel space is the measurable space arising from a set ⌦ together
with a � -algebraA that is the collection of Borel sets generated by some topology on
⌦ (in the same way that we “forget” the metric of a Polish space, here we “forget” the
topology of ⌦ and only remember its Borel sets). A standard Borel space or standard
B space is a Borel space associated to some Polish space.

The above two definitions are standard in the theory of Polish spaces and Borel
combinatorics, but we will find it useful to extend them to the larger � -algebras
defined above on Polish spaces: we let a standard � 1

↵ space be any measurable space
arising from a Polish space X equipped with the � -algebra of � 1

↵(X).

When faced with a measurable selection theorem that makes reference to arbitrary
measurable spaces, we will replace these with standard measurable spaces of some
sort, usually B or � 1

1 on some Polish space, to produce a version of the theorem in a
Polish space setting (when this does not trivialize the theorem in question). We also
mention in passing an important classical theorem that classifies the standard Borel
spaces as measurable spaces by their cardinality.

Theorem 2.3.2 (Kuratowski). Any two standard Borel spaces of the same cardinality
are Borel isomorphic. In particular, any standard Borel space is Borel isomorphic to
either a discrete finite space, !, or !! (which is Borel isomorphic to R).

2.3.2 The Lebesgue and Universal � -Algebras

We will use the Lebesgue measure on any uncountable Polish space defined, say,
using a fixed Borel isomorphism with R as per Kuratowski’s theorem, and denote the
collection of Lebesgue measurable sets in an uncountable Polish space X by L(X) (we
will basically treat L as a pointclass akin to the projective pointclasses for the sake
of notational consistency). We also often invoke a stronger notion of measurability
for subsets of Polish spaces.

Definition 2.3.3. For X a Polish space, A ✓ X is universally measurable (absolutely
measurable in some literature) if it is measurable with respect to every complete
Borel probability measure on X. We denote by U(X) the collection of universally
measurable sets in X, and, as above, treat U roughly as a pointclass.
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We will see that large cardinal assumptions that imply the Lebesgue measurability of
some pointclass also usually imply its universal measurability, and thus our results
will often involve universal measurability as it is a stronger property: it is an easy
exercise to show U Ã L. And, it is a classical result that � 1

1 sets are universally
measurable (the result usually phrased as analytic sets being universally measurable),
so we have a strict hierarchy B Ã � 1

1 ÃU Ã L.
When it is not present explicitly in a measurable selection theorem already and the

theorem demands a projectively measurable (i.e. �1
↵-measurable or � 1

↵-measurable)
selection, we will substitute for this the condition of universal measurability. We will
then produce a selection that is measurable with respect to some higher projective
� -algebra (for example, if the original theorem requires a � 1

1 -measurable selection,
the results we leverage may only supply a �1

2-measurable selection), and use a large
cardinal assumption to force such a selection to also be universally measurable.

Remark. Note that moving from, say, Borel measurability to universal measurabil-
ity is not, generally speaking, a particularly serious loss in strength for all practical
purposes. In particular, a universally measurable function � is equal µ-almost every-
where to a Borel measurable function, for any complete Borel probability measure µ.
To see this, let B(µ) be the completion of the Borel � -algebra with respect to such
a µ, then any universally measurable set is in B(µ), whereby � is B(µ)-measurable.
But then, the definition of the completion B(µ) implies that there is a map ↵µ that
is B-measurable and equal to � µ-almost everywhere. We will not bother with trans-
forming our results into this form throughout, but this line of reasoning is a good
intuitive indicator of the relative strength of universal measurability as a regularity
condition for functions.

2.4 The Multifunction Viewpoint

Besides appealing to the visual intuition of drawing a curve through a planar set,
measurable selection theory also often uses the multifunction formalism, which em-
phasizes that a selection makes a sequence of choices from sets.

Definition 2.4.1. A multifunction F : X s Y is a function with values in P(Y), the
power set of Y (we take this notation to automatically designate that F is a multi-
function).

Note that this is compatible with our notation of A(x) for the section over x of some
A ✓ X⇥Y ; thus, a multifunction is to some extent identified with its graph. However,
there are separate notions of measurability for multifunctions which do not always
correspond directly with the same measurability for their graphs—we will deal with
this obstacle below.

Given F : X s Y , a selection for it is a function f : X ! Y such that f(x) 2 F(x)
for all x 2 X. The graph Gr(F) ✓ X ⇥ Y of F is Gr(F) = {(x,y) : y 2 F(x)}.
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Definition 2.4.2. We call F : X s Y total if F(x) î ú for all x 2 X. For F : X s Y and
a set A ✓ Y , we define its preimage:

F
�1
(A) = {x 2 X | F(x)\A î ú}.

For a � -algebra A on X, we say that F is A-measurable if F�1
(U) 2A for any open

set U ✓ Y , and strongly � -measurable if this holds for closed sets instead. A mul-
tifunction F is said to be � -valued for some collection of sets � if F(x) 2 �(Y) for
each x (usually these are conditions like closed-valued or compact-valued). A brief
disclaimer on notation is in order here: we adopt the definitions of Srivastava [23,
Section 5.1] and others, but some sources [26] use weakly A-measurable for our
A-measurable, and A-measurable for our strongly A-measurable (this is an earlier
convention, after whose adoption many results indicated that weak measurability
was actually the more fundamental notion, leading to the partial shift to our termi-
nology).

It is easy to observe that when F is single-valued, then these notions both coincide
with ordinary measurability. We note also that the conditions of being closed-valued
or compact-valued, which often feature in multifunction selection theorems, do not
force any particular complexity on the multifunction graph; for instance, any ordi-
nary function is singleton-valued and hence closed-valued and compact-valued, but
this does not impose any a priori restrictions on its graph. These are instead tech-
nical conditions that allow arguments such as those presented below, connecting a
multifunction’s measurability with the complexity of its graph. They may be thought
of as imposing the condition that the multifunction be into some structured sub-
set of P(Y), such as the Effros Borel structure on the closed subsets, or the (Polish)
Vietoris topology on the compact subsets.

Proposition 2.4.3. Let X,Y be Polish spaces, and F : X s Y closed-valued. If F is
� -measurable for a pointclass � that contains all of the closed sets and forms a � -
algebra, then Gr(F) 2 � .

Proof. Consider the condition (x,y) � Gr(F), which is equivalent to y � F(x). Since
F(x) is closed, this means y is not a limit point of F(x) and so if {Un}n2! is a
countable basis for Y then for some n, we have y 2 Un and Un \ F(x) = ú. This is
equivalently x � F�1

(Un), or x 2 F�1
(Un)

c . Thus, (x,y) � Gr(F) if and only if for
some n 2!, x 2 F�1

(Un)
c and y 2 Un. So, we find

Gr(F)c =
[

n2!
F
�1
(Un)

c ⇥Un,

or
Gr(F) =

\

n2!
(F

�1
(Un)

c ⇥Un)c =
\

n2!
(F

�1
(Un)⇥ Y [X ⇥Ucn).
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Since F is � -measurable, F�1
(Un) 2 � , and so F�1

(Un) ⇥ Y 2 � , and since � contains
the closed sets, X ⇥ Ucn 2 � as well. Thus, every term of the intersection is in � , so
Gr(F) is a countable intersection of sets in � , and thus is itself in � .

In particular, this holds for any � 1
↵ and any �1

↵. We can also move between these
assumptions in the reverse direction.

Proposition 2.4.4. If � is a pointclass that contains the open sets and is closed un-
der projection, and F : X s Y is a multifunction with Gr(F) 2 � , then F is �(�)-
measurable.

Proof. We have F�1
(U) = {x : F(x)\ U î ú} = ⇡X(Gr(F)\ X ⇥ U), which is in � if �

is closed under projections.

This in particular holds for any ⌃1
↵ with ↵ � 1. Note that since any ordinary single-

valued function is a closed-valued multifunction, we automatically obtain from these
results the convenient corresponding corollaries for single-valued functions as well,
which will be useful later. We will soon examine some refinements of these results
for membership of Gr(F) in the other projective pointclasses, as well.

3 Analytic Implications of Large Cardinals

Definition 3.0.5. The following table lays out the notation we will use for relevant
set-theoretic hypotheses. The definitions and relevant background on any unfamiliar
terms below, particularly those involving large cardinals, can be found in [12] or [13].
Let � and �i below be collections of sets, and n !.

Hypothesis Statement

Leb(�) Any set in � is Lebesgue measurable.
Univ(�) Any set in � is universally measurable.

Unif(�) Any planar set in � has a selection whose graph is in � .
MSel�1(�2) Any planar set in �2 has a selection that is �1-measurable.
LebSel(�) Any planar set in � has a Lebesgue measurable selection.
UnivSel(�) Any planar set in � has a universally measurable selection.

Det(�) The Gale-Stewart game on any set in � is determined.
PD The Gale-Stewart Game on any projective set is determined.

MC There is a measurable cardinal.
Woo(n) There are n Woodin cardinals with a measurable cardinal

above all of them.

In this section, we present the existing results (and provide some interstitial proposi-
tions) linking the large cardinal hypotheses MC and Woo(n) to the measurable selec-
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tion hypothesis LebSel, UnivSel, and MSel•(•). We will basically proceed backwards
through the chain of relevant implications.

3.1 From Uniformization to Measurable Selection

The hypothesis Unif(�) above, uniformization of sets in � by functions with their
graph in � , is used more commonly as an indicator of regularity for the pointclass
� in set theory than hypotheses about measurable selections on � . However, these
properties are closely related. Let f : X ! Y be a map between Polish spaces, and let
Gr(f ) ✓ X ⇥ Y be its graph.

Proposition 3.1.1. If Gr(f ) 2 ⇧1
n, then f is �1

n+1-measurable.

Proof. For a Borel set B ✓ Y , we have f�1
(B) = ⇡1((X ⇥ B) \ Gr(f )), where ⇡1

is projection onto the first coordinate. We have X ⇥ B is Borel, and Gr(f ) is ⇧1
n,

so f�1
(B) is a projection of a ⇧1

n set and hence is ⌃1
n+1. But, the same is true for

f
�1
(B

c
) = f�1

(B)
c , and so f�1

(B) 2 �1
n+1.

Proposition 3.1.2. If Gr(f ) 2 ⌃1
n, then f is �1

n-measurable.

Proof. We use the same argument as above, except taking advantage of the fact that
⌃1
n is closed under projection, thus f�1

(B) 2 ⌃1
n for any Borel B ✓ Y . Again, the same

holds for f�1
(B)

c , and so f�1
(B) 2 �1

n.

Corollary 3.1.3. The following implications hold.

• Unif(⇧1
n)! MSel�1

n+1
(⇧1

n).

• Unif(⌃1
n)! MSel�1

n
(⌃1

n).

• Unif(�1
n)! MSel�1

n
(�1

n).

Clearly we also have the two implications

• MSel�1(�2)+ Leb(�2)! LebSel(�2),

• MSel�1(�2)+ Univ(�2)! UnivSel(�2),

and in combination with the previous corollary, we obtain the following (we drop the
results on Lebesgue measurability from this point onward because we will not need
them later; from the foundational viewpoint universal measurability almost always
comes along with Lebesgue measurability, so for the sake of economy we restrict
ourselves to the stronger notion).

Corollary 3.1.4. The following implications hold.

• Unif(⇧1
n)+ Univ(�1

n+1)! UnivSel(⇧1
n).

12



• Unif(⌃1
n)+ Univ(�1

n)! UnivSel(⌃1
n).

• Unif(�1
n)+ Univ(�1

n)! UnivSel(�1
n).

3.2 Satisfying Uniformization

It remains to see how we can simplify the satisfaction of the hypotheses Unif(�) and
Univ(�) for the projective pointclasses. First, we note that there are two classical the-
orems that give us a useful degree of uniformization in ZFC even without additional
set-theoretic assumptions.

Theorem 3.2.1 (Novikoff-Kondô-Addison). Unif(⇧1
1) holds in ZFC.

Theorem 3.2.2 (Kondô). Unif(⌃1
2) holds in ZFC.

We will refer liberally to both of these results as Kondô’s theorem. Combining these
statements with 3.1.4 gives us the following.

Corollary 3.2.3. Univ(�1
2)! UnivSel(⌃1

2) (which subsumes UnivSel(⇧1
1)).

This will largely suffice for our purposes, but it is worth mentioning the natural
extension of Kondô’s results by Moschovakis using the theory of scales, which pushes
these results up the projective hierarchy assuming more projective determinacy.

Theorem 3.2.4 (Moschovakis 1971). Det(�1
2n)! Unif(⇧1

2n+1) and Unif(⌃1
2n+2).

Note that at n = 0, we recover Kondô’s theorem(s) from above (interpreting �1
0 as the

pointclass of clopen sets).

3.3 Satisfying Universal Measurability

Here we proceed by way of determinacy as an intermediate hypothesis between large
cardinals and measurability of sets. We compose the following two well-known re-
sults.

Theorem 3.3.1 (Martin, Steel). For any n 2!, Woo(n)! Det(⇧1
n+1).

Theorem 3.3.2 (Kechris, Martin). For any n 2!, Det(⇧1
n)! Univ(⌃1

n+1).

With this, we obtain the following.

Corollary 3.3.3. For any n 2 !, we have that Woo(n) ! Univ(⌃1
n+2), and thus also

that Woo(n)! Univ(�
1
n+2).

In particular, at n = 0 we have MC ! Univ(�
1
2 ). Restricting this further, we obtain

MC ! Univ(�1
2), which in combination with Corollary 3.2.3 gives the following.
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Corollary 3.3.4. MC ! UnivSel(⌃1
2).

This gives one method of extracting a measurable selection with the assistance of a
measurable cardinal: we simply show that the set we are selecting from is ⌃1

2, which
will ensure a universally measurable selection, the underlying situation being that we
first produce a ⌃1

2-measurable uniformization, which is �1
2-measurable as a function,

and we then ensure that the �1
2 sets are universally measurable.

3.4 Extending the Power of MC: A More Refined Argument

Note that in the above line of reasoning, we are wasting much of the power of the
statement MC ! Univ(�

1
2 ) by only using that Univ(�1

2). Instead, it is sometimes
advantageous to produce a uniformization partly by hand instead of just using the
truth of Unif(�) for some � (we give an example below). Then, we can use the fact
that MC implies that � 1

2 -measurable functions are universally measurable. One useful
application of this line of reasoning is given below.

Example 3.4.1 (Piecewise Selections). Suppose X and Y are Polish spaces. Suppose
also that we have {Xn}n2! a partition of X into countably many disjoint subsets,
with Xn 2 � 1

2 (X), and An ✓ X ⇥ Y for n 2 !, such that Xn ✓ ⇡X(An). The question
we consider is whether we can produce a selection f : X ! Y on which we impose
the condition that (x, f (x)) 2 An whenever x 2 Xn; that is, the set An represents
some condition on f that it must satisfy over Xn.

Suppose that we can produce for each n 2 ! a function fn : X ! Y that is a � 1
2 -

measurable selection of An. Then, we can define f : X ! Y piecewise by f |Xn= fn.
For R ✓ Y an open set, we have f�1

(R) =
S
n2! f

�1
n (R)\ Xn and f�1

n (R) and Xn are
both � 1

2 , so f�1
(R) 2 � 1

2 , and thus f is � 1
2 -measurable. And, assuming a measurable

cardinal, we have that f is universally measurable.
Various slightly stronger versions of this are possible. For instance, we can drop

the requirement that the union of the Xn is all of X by just adding another subset
X0 = (X1 [ X2 [ . . . )c with A0 = X ⇥ Y (i.e. on the area not covered by any Xn, we
allow an arbitrary choice). We can also drop the requirement that the Xn are disjoint
if there are only finitely many sets, by just enumerating all possible subcollections of
the Xn that a given point could belong to (and intersecting the corresponding An).

3.5 Metamathematical Miscellanea

There are a number of metamathematical alternatives to assuming the existence of a
measurable cardinal that can give us similar results; though we will work with a mea-
surable cardinal in the following sections on applications of the preceding material,
it is worth mentioning these options in case sharper assumptions are desirable.
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3.5.1 Martin’s Axiom and ¬CH

The first possible alternative is expressed in terms of the continuum hypothesis (CH)
and Martin’s axiom (MA; see [16] for the original description). We summarize in brief
the story told in more detail by Martin and Solovay in [16]: it was discovered in short
order after Cohen’s proof of the independence of CH that ¬CH was a much weaker
statement than CH, failing to decide many of the interesting statements that could
be proved with CH. Martin’s axiom MA was of interest in part because MA + ¬CH is
in fact of roughly commensurable logical strength with CH (though the network of
relationships here is rather elaborate; we also have for instance CH ! MA, and MA

itself implies many of the interesting consequences of CH).
As described in the original paper (and as is now conventional notation), there is

a parametrization by cardinal numbers of Martin’s axiom, giving axioms MA(k) for a
cardinal k, where MA itself is the statement that if k < 2@0 , then MA(k). It is shown
in [16] that MA(@1) (which of course follows from MA+¬CH) implies Leb(⌃1

2) (and it
is easy to see from the argument given there that the same reasoning gives universal
measurability as well), which gives us much the same power as a measurable cardinal
(using Kondô’s theorem for ⌃1

2 to produce the uniformization before applying this).
A variety of combinations of assumptions are also possible and give a correspond-

ing variety of possibly-relevant results; perhaps the most enticing is, as shown in [16],
that MA(@2) + MC ! Leb(⌃1

3), and correspondingly also Univ(⌃1
3). However, to take

advantage of this directly to obtain, say, UnivSel(⌃1
3) would require a Woodin cardinal

so that we can uniformize ⌃1
3 sets in the first place, and we will see that UnivSel(⌃1

2)

is sufficient for all examples we consider, so we will not pursue this line of reasoning
further here.

3.5.2 Shoenfield Absoluteness and Absolute Descriptive Complexity

Fenstad and Normann have also introduced notions of provable and absolute descrip-
tive complexity, particularly looking at these versions of the �1

2 pointclass [20].

Definition 3.5.1. A set A ✓ !! is provably �1
2 if there are ⌃1

2 and ⇧1
2 propositions  

and �, respectively, with free variables x and y , and a parameter y 2!! such that:

• x 2 A$  (x,y)$ �(x,y), and

• ZF ` 8(x,y 2!!
)( (x,y)$ �(x,y)).

And, A is absolutely �1
2 if we have such propositions  ,� again such that:

• x 2 A$  (x,y)$ �(x,y), and

• for all standard models M of ZF such that x,y 2 M , we have �(x,y) $ M Ó
�(x,y) and  (x,y)$ M Ó  (x,y).

15



We note, as do the authors of [20], that it is immediate from Shoenfield’s absoluteness
theorem that if A is provably �1

2 then it is also absolutely �1
2. The main result proved

on these sets is the following.

Theorem 3.5.2 (Fenstad, Normann). If for all x 2 !! there is a countable standard
model M of ZF such that x 2 M , then every absolutely �1

2 set is universally measur-
able.

Thus, so long as we can obtain selections � such that preimages of open/Borel sets
are not just �1

2 but are provably so, then we can reproduce these results without
any metamathematical assumptions, avoiding even the need to assume a measurable
cardinal.

In particular, with reference to an “effective” proof of Kondô’s theorem, with ⇧1
1

(or ⌃1
2 in the other version) taken as arithmetical hierarchy complexities in !! rel-

ative to a fixed element a 2 !!—historically, an effective proof was first provided
by Addison, which proof is concisely presented in [13, Theorem 13.17]—we see as
a consequence that any �1

2-measurable selection produced by Kondô’s theorem can
be chosen to be provably �1

2, and thus to be universally measurable by the above
(alternatively, in all of the below proofs we of course also determine the complexity
of the preimage sets for a selection function by hand, thus implicitly demonstrating
that these sets are provably �1

2 in each case individually also).
Perhaps of further independent interest from the same work may be their note

that the method of the proof of the above theorem, in combination with the Shoen-
field absoluteness theorem and the MC assumption, gives Univ(⌃1

2) as well, according
to an unpublished argument of Solovay’s. This gives a much more direct derivation
of MC ! Univ(⌃1

2) with significantly less high-powered set-theoretic machinery in-
volved than the path that we took above (though our approach has the advantage
of illustrating the extensions of these statements up the projective hierarchy under
Woodin cardinal assumptions).

4 Applications

My own view is that the projective hierarchy is so far removed from normal
mathematics that...this development does not come close to satisfactorily es-
tablishing the importance or relevance of large cardinals to mathematics. We
want demonstrably necessary uses of large cardinals in concrete mathemati-
cal contexts—the more concrete the better.

— Harvey Friedman, What You Cannot Prove

In this section, we provide some illustrations of actual applications of measurable
selection ideas in relatively “concrete” mathematics, mostly either mathematical eco-
nomics or the related areas of optimization and control theory (in rather abstractly-
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conceived form). First though, we will examine how our results compare in strength
to some of the classical results from the general theory of measurable selection.

4.1 General Selection Theorems

In this section we examine some of the historically original theorems of measurable
selection theory, which typically attempted to produce selections of a certain mea-
surability under a particular assumption of the complexity of the choice set, without
assuming any further structure on the set (indeed note that Kondô’s theorem is such
a statement; we use it among our tools as it is weaker and chronologically prior by
roughly a decade to the body of work under consideration here).

4.1.1 Selections of Borel and Analytic Sets

One of the initial motivating questions of measurable selection theory was: under
what conditions does a planar Borel set have a Borel-measurable selection? The an-
swer cannot be “always”, as illustrated by a standard counterexample due to Black-
well [23, Example 5.1.7]. This obstacle can be circumvented in one of two directions:
either one can find how much stronger the assumption on the Borel set must be in
order to force it to have a Borel selection, or one can weaken the assumption on the
Borel-measurable selection in the conclusion until the statement is true.

Only the second of these questions is within the reach of our methods: Borel sets
are the smallest � -algebra that we are able to distinguish in the context of the pro-
jective hierarchy, and we recall that our plan consisted in replacing stronger notions
of measurability with universal measurability to render large cardinal assumptions
useful. One of the well-known results following this route is the following theorem
(attributed variously to Jankoff and von Neumann), which actually proves a more
general statement about selecting from analytic sets.

Theorem 4.1.1 (Jankoff-von Neumann [25]). Let X,Y be Polish spaces and F : X s Y

a total closed-valued multifunction with Gr(F) 2 ⌃1
1(X ⇥ Y). Then, F admits a � 1

1 -
measurable selection.

If we weaken the conclusion of this theorem to universal measurability, then we im-
mediately obtain a proof assuming a measurable cardinal from MC ! UnivSel(⌃1

2),
since � 1

1 ✓ ⌃1
2, and indeed if we do this then we may also further weaken the as-

sumption on the graph of F to Gr(F) 2 ⌃1
2(X ⇥ Y).

4.1.2 The Kuratowski-Ryll Nardzewski Theorem

It is worth mentioning one of the main broad generalizations of von Neumann’s the-
orem, though we will only be able to prove a relatively narrow restriction of its claim
by our means. We present a slight restriction of the theorem in its full generality;
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our version is the one discussed in Wagner’s survey [26]. A standard proof of this
version can be found in [1].

Theorem 4.1.2 (Kuratowski-Ryll Nardzewski). If (S,A) is a measurable space, Y a
Polish space, and F : (S,A)s Y a total, measurable multifunction with closed values,
then F admits an A-measurable selection.

To adapt this to proof by our means, we replace the domain with another Polish space
X, and replace the conclusion with F having a universally measurable selection. Since
we want to use MC ! UnivSel(⌃1

2), the largest projective � -algebra on X that we can
handle here is �1

2. Then, we can prove the following variation of the theorem (this
is something of a triviality relative to the power of the original theorem, but it is
another useful basic illustration of our approach).

Theorem 4.1.3 (�1
2 Kuratowski-Ryll Nardzewski). If X and Y are Polish spaces, and

F : X s Y a total, �1
2-measurable multifunction with closed values, then F admits a

universally measurable selection.

Proof (with MC). We use our earlier result that a �1
2-measurable multifunction has a

�1
2 graph, and thus in particular a ⌃1

2 graph, and invoking MC ! UnivSel(⌃1
2) then

completes the proof.

4.1.3 Countable Families of Selections

It is also common that a measurable selection theorem produce not just one measur-
able selection, but a countable sequence of measurable selections, which must cover
(under various interpretations of “covering”) the choice set. Fortunately, this setting
is not so different from the case of a single selection, as our approach to the first
result below will illustrate.

The simplest setting of the above sort of theorem is when the sections of the
choice set are countable, in which case it is reasonable to expect that countably many
selections can cover the entire choice set. The theorem below is the most basic result
of this kind.

Theorem 4.1.4 (Lusin). Let X,Y be Polish spaces and A 2 ⌃1
1(X⇥Y) such that A(x) is

countable for all x 2 X. Then, there are countably many Borel selections �i : X ! Y

of A for i 2! such that
S

Gr(�i) = A, i.e. the graphs of the �i cover A.

One standard proof of this uses as a preliminary a reflection theorem due to Burgess,
from which Lusin’s result follows more or less directly [23, Theorem 5.10.3]. As
before, we weaken the condition on the �i from Borel measurability to universal
measurability before proceeding.

Proof (with MC). This proof will illustrate the general approach we will take to pro-
ducing countable sequences of selections: instead of trying to produce the individual
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functions �i, we instead produce a map � : X ! Y
! (recall that Y! is still Pol-

ish), such that upon taking �i to be the ith coordinate of �, we obtain the desired
sequence of �i. Note that composing a universally measurable function with the
projection onto the ith coordinate gives a universally measurable function, since the
projections are continuous. Thus, for the �i to be universally measurable, it suffices
for � to be universally measurable.

The condition that the graphs of the �i cover A is equivalently:

8(x 2 X)8(y 2 Y)
✓
(x,y) 2 A! 9(i 2!)(�i(x) = y)

◆
,

or

8(x 2 X)8(y 2 Y)9(i 2!)
✓
(x,y) � A or ⇡i(�(x)) = y

◆
,

hence � must be a selection from the set P ✓ X ⇥ Y! of (x, z) that satisfy

8(y 2 Y)9(i 2!)
✓
(x,y) � A or ⇡i(z) = y

◆
.

Since A is ⌃1
1 and ⇡i is continuous for each i, the inner condition is ⇧1

1, and hence the
set P is ⇧1

1 (and trivially has non-empty sections; over any x, just take z to enumerate
A(x)). Hence, P has a universally measurable selection.

A variant of this statement due to Burgess (presented in its source for the pur-
poses of resolving a problem in mathematical economics) can be found in [5], where
the large cardinal simplification is also mentioned briefly. We elaborate the argu-
ment in our notation here. The section of the argument that we simplify concerns
the following result, Corollary 13 in [5].

Theorem 4.1.5 (Burgess). Let X,Y be Polish spaces, and A 2 ⌃1
1(X ⇥ Y). Then:

• The set C = {x 2 X : |A(x)| !}, the set of x with countable sections, is ⇧1
1.

• There is a sequence {�i}i2! of countably many � 1
1 -measurable selections �i :

X ! Y such that for all x 2 C , A(x) ✓ {�i(x) : i 2!}.

The measurable selection is the second part, and we will show how to prove the sec-
ond part assuming the first. We reduce the � 1

1 -measurability condition to universal
measurability, and proceed as before.

Proof (with MC). The proof follows the one for Lusin’s theorem exactly, except that
the condition

(x,y) 2 A! 9(i 2!)(⇡i(�(x)) = y)

is only required when x 2 C , which we can write as an extra condition

((x,y) 2 A and x 2 C)! 9(i 2!)(⇡i(�(x)) = y),

19



and since A 2 ⌃1
1 and C 2 ⇧1

1, their intersection is only guaranteed to be contained
in �1

2, thus the choice set P can only be assumed to be �1
2. But, since our universal

selection results under a measurable cardinal extend to ⌃1
2, this still has a univer-

sally measurable selection, and so the rest of the proof goes through as for Lusin’s
theorem above.

Note that if desired, an intermediate result of this argument yields a family of �1
2-

measurable selections satisfying the necessary condition, a different weakening of
the � 1

1 -measurability in the original result.

4.1.4 Castaing Representations

Now, we explore the selection theorems resulting from lifting the condition that the
sections of the choice set we are concerned with be countable. The easiest way to
adjust the types of statements examined above into this context is to require that
the section above some x be covered not by just the union of the selection values
{�i(x) | i 2!}, but by the closure of this set.

Definition 4.1.6. For X,Y Polish spaces and a closed-valued multifunction F : X s Y ,
we call a family of selections {�i} a Castaing representation of F if for each x 2 X,
F(x) = {�i(x) | i 2!}. A property demanded of the representation is demanded of
each function, for instance a measurable Castaing representation has each �i mea-
surable.

Theorem 4.1.7 (Castaing). Let (X,A) be a measurable space, Y a Polish space, and
F : X s Y a total, closed-valued multifunction. If F is A-measurable, then F admits
an A-measurable Castaing representation.

This theorem and its standard proof can be found in [6, Theorem III.8.1] (indeed,
a brief argument given in their Theorem III.9 shows that F being A-measurable is
equivalent to the existence of an A-measurable Castaing representation, so Castaing
representations provide an alternate characterization of multifunction measurabil-
ity). We will prove this in lesser generality, where (X,A) is a standard Borel space,
on the Polish space X, and where the functions of the Castaing representation are
universally measurable.

Proof (with MC). As before, reinterpret the required universally measurable �i : X !
Y to a single universally measurable � : X ! Y

!. Let {Un} be a countable basis of Y .
The condition that {�i(x) | i 2!} is dense in F(x) can then be written as

8(r 2 F(x))8(n 2!)
✓
r 2 Un ! 9(i 2!)

�
⇡i(�(x)) 2 Un

�◆
,
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and so � is a selection from the set P consisting of (x, z) 2 X ⇥ Y! for which

8(r 2 F(x))8(n 2!)
✓
r 2 Un ! 9(i 2!)

�
⇡i(z) 2 Un

�◆
,

which after expanding the implication and extracting the quantifier over ! is

8(r 2 Y)8(n 2!)9(i 2!)
✓
¬
�
(x,y) 2 Gr(F) and r 2 Un

�
or ⇡i(z) 2 Un

◆
,

or

8(r 2 Y)8(n 2!)9(i 2!)
✓
(x,y) � Gr(F) or r � Un or ⇡i(z) 2 Un

◆
.

Since F is Borel-measurable, Gr(F) is a Borel set, so the entire inner condition is Borel,
as is the condition including both quantifications over!. So, we have P 2 ⇧1

1(X⇥Y!),
and thus P has a universally measurable selection.

4.2 Measurably Parametrized Theorems

Though it is not the case across the board, it is very typical for measurable selection
theorems in more concrete fields to come in a particular flavor, namely that of a
“randomization” or “parametrization” of an existing result.

Very broadly speaking, this consists of the following transformation of a result:
suppose that given Polish X and Y , for any x 2 X we can construct y 2 Y to satisfy
some proposition P(x,y). Then, given a measurable space ⌦, we ask if, given a
measurable x : ⌦ ! X, we can construct a measurable y : ⌦ ! Y such that for all
! 2 ⌦, P(x(!),y(!)) holds. In other words, we ask if the construction can be
carried out in a measurable way with respect to a new parameter !, assuming that
the “problem statement” x behaves measurably with respect to this parameter. If
⌦ is a probability space, then x and y are random variables, in which case another
interpretation is that there is uncertainty in the problem statement x, and we want a
probabilistic construction y such that P(x,y) still always holds.

4.2.1 A First Parametrization: The Bolzano-Weierstrass Theorem

We begin with a simple example to illustrate the general course of action, parametriz-
ing a familiar and basic theorem from analysis. It is worth nothing that this is not just
a novelty; the statement we work with here (though easy to prove directly) is used
e.g. in [8] in a proof of the “fundamental theorem of asset pricing”, a characterization
of arbitrage-free stochastic financial market models.

The Bolzano-Weierstrass theorem states that any bounded sequence {xn}n2! in
Rd has a convergent subsequence, i.e. a strictly increasing sequence {�m}m2! in !,
which can also be interpreted as a single element � 2 !!, and an element y 2 Rd

such that x�m ! y (we write the convergent-subsequence condition in such expanded
form to make the parallel with the following version very transparent).
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Suppose we now have a measurable space (⌦,F) against which we would like to
parametrize this. We take xn : ⌦ ! Rd (all functions we mention from ⌦ will be
measurable) such that {xn(!)} for any given ! is a bounded set. Then, we want
to find � : ⌦ ! !

! (whose values are restricted to the subset of strictly increasing
sequences in !!) and y : ⌦ ! Rd such that x⇡(�(!),m)(!) ! y(!) for all ! 2 ⌦,
where ⇡(a, k) is the function projects a from whatever product space a belongs to,
onto its kth coordinate. Write X = (Rd)! (a Polish space), then we can view all the xn
together as a single map x : ⌦ ! X, so that the convergent-subsequence condition
becomes ⇡(x(!),⇡(�(!),m))! y(!).

We then view the pair of desired functions (y,�) as a single map� : ⌦ ! Rd⇥!!,
and construct a choice set C ✓ ⌦⇥Rd⇥!! from which we will select �. This choice
set contains a point (!, y,�) if and only if � is a strictly increasing sequence (which
is a closed condition, as any limit point of a set of strictly increasing sequences
must clearly itself be strictly increasing), and ⇡(x(!),⇡(� ,m)) ! y , which latter
condition can be rewritten as:

8(n 2!)9(N 2!)8(m 2!)
✓
m � N !

��⇡(x(!),⇡(� ,m))�y
�� < 1

n

◆
.

This is a Borel condition, and hence C is a Borel set. Also, we have that C is total as
a multifunction by the ordinary unparametrized Bolzano-Weierstrass theorem.

Now, suppose that ⌦ is a standard Borel space. Then, the inner condition is Borel,
and thus C is Borel, and has a universally measurable selection, which gives a univer-
sally measurable � as above (we could just as well assume that ⌦ is a standard � 1

1

space, or in fact any sub-� -algebra thereof; note though that since we are producing
a universally measurable selection against the Polish space structure of ⌦, not an F -
measurable selection, we may as well formulate the result in terms of the finest pos-
sible � -algebra). This gives the desired parametrization of the Bolzano-Weierstrass
theorem; we have proved the following (unpacked back into more familiar form).

Theorem 4.2.1. If ⌦ is a Polish space and xn : ⌦ ! Rd are � 1
1 -measurable, with

each x(!) as a sequence in Rd having a convergent subsequence, then there are
universally measurable �m : ⌦ ! ! and y : ⌦ ! Rd such that for each ! 2 ⌦,
�m(!) is a strictly increasing sequence in m, and x�m(!)(!)! y(!).

4.2.2 Parametrized Continuous Preference Orders

Of central interest in mathematical economics is the question of representing pref-
erence orders by utility functions. Here, we consider the question of parametrizing
this problem.

Definition 4.2.2. For a topological space X, a continuous preference order on X is a
binary relation ⌫ that is reflexive, transitive, and total, and so that for any x 2 X,
the preceding and succeeding segments, {x0 2 X : x ⌫ x

0} and {x0 2 X : x0 ⌫ x}
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respectively, are both closed sets in the topology of X. A continuous function f :
X ! R represents ⌫ if we have x ⌫ x0 if and only if f(x) � f(x0).

Of particular interest are continuous (as functions) representations of continuous
preference orders. An older theorem of Debreu cited in [27] gives that a continuous
preference order on a second-countable space X can be represented by a continuous
function. The Measurable Utility Theorem proved by Wesley in [27] states a version
of the following (which is adapted for our purposes).

Theorem 4.2.3 (Adapted Measurable Utility Theorem). Let T ,X be Polish, let � :
T s X, and for each t 2 T let ⌫t be a continuous preference order on the set
�(t) ✓ X. Suppose that the set

S = {(t, x,x0) : x,x0 2 �(t) and x ⌫t x0} ✓ T ⇥X ⇥X

is Borel, then there is a universally measurable function U : T ⇥ X ! R so that for
almost all t 2 T , the function U(·, t) is continuous and represents ⌫t .

In the original, we have T = [0,1], X a finite power of R, the conclusion only holds
for Lebesgue-almost all t, and the result a Borel measurable function instead of a uni-
versally measurable one (recall also from our earlier discussion that it is possible to
parlay a universally-measurable function into Borel function that is µ-almost every-
where identical for any complete Borel measure µ, so we can easily recover something
resembling the original result from our adapted version in this case).

Proof (with MC). Note that it is enough to prove the statement for X compact: any
Polish space embeds as a G� subset of the Hilbert cube [0,1]!, which is compact,
and clearly expanding the space X in the theorem does not change the statement (as
� is allowed to be an arbitrary multifunction).

Then, we instead will view U as a function U : T ! C(X), which subsumes the
requirement that U(·, t) be continuous, and where C(X) is Polish since X is compact.
Let � ✓ T ⇥X be the graph of �. Then, note that since x ⌫t x for each x 2 �(t) for
any t, if we define the diagonal of S as SD = S \ {(t, x,x0) : x = x0} (which is again
Borel), then � is the projection of SD onto T ⇥X, whereby � 2 ⌃1

1(T ⇥X).
Let C ✓ T ⇥C(X) be the choice set we will construct. We let (t, f ) 2 C if and only

if:

8(x,x0 2 X)
✓
(t, x) 2 � and (t, x0) 2 � !

�
f(x) � f(x0)$ (t, x,x

0
) 2 S

�◆
.

Note that the inner condition is just that of f representing ⌫t . Since S is Borel, �
is ⌃1

1, and f(x) � f(x0) is a Borel condition in the variables involved, we have that
the inner condition is at worst �1

2, and thus the entire condition is at worst ⌃1
2, hence

C 2 ⌃1
2(T ⇥ C(X)). And, C is total as a multifunction, since by Debreu’s theorem

mentioned above we have that each ⌫t is indeed represented by some continuous
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function on X. Thus, assuming a measurable cardinal, C has a measurable selection,
which then satisfies the desired criteria.

This is a particularly interesting application historically and metamathematically
speaking, as the original result is proved in [27] using methods involving generic
models and Cohen forcing, and at the time of writing the authors knew of no “el-
ementary” method of proving the claim (i.e. one not making use of external logical
tools), and as on the other hand the above method of proof of the adapted version
does not at all suggest that this theorem should be significantly more difficult than
many of the results that we considered earlier.

A somewhat more similar result to our adapted version is proved in [18] (the
continuous representations of continuous preference orders are also called Paretian
utility functions). In particular, this proves the result for all indices t 2 T rather than
for Lebesgue-almost all of them. A further, more modern discussion of a similar
problem can also be found in [11].

4.2.3 Parametrized Universalities of the Cantor Space

One of the earliest motivations for the development of descriptive set theory was
Cantor’s attempt to prove the truth of the Continuum Hypothesis (CH) by showing,
for any A ✓ R, that either A is countable, or else A contains a homeomorphic image
of the Cantor space 2!. In light of the independence of CH, this property is of course
only true of particular classes of regular subsets of R; in particular, a construction
due to Cantor [19, Corollary 1A.3] gives that any non-empty perfect P ✓ R contains
inside it a homeomorph of 2!. For Cantor, the useful corollary of this was that any
subset of R containing a non-empty perfect set then could not have a cardinality
lower than that of the continuum (by the Cantor-Bendixson theorem, the closed sets
of any Polish space have the so-called “perfect set property”, a regularity property
very commonly used in descriptive set theory of a subset either being countable or
else containing a perfect set; another classical result gives the same for all ⌃1

1 sets;
sufficiently large cardinals give the same for any projective set).

We examine here a parametrized version of the problem of finding a homeomor-
phism 2! > P for P a perfect subset of a Polish space (which by classical means
usually entails directly parametrizing Cantor’s construction mentioned above). We
look at Pol’s theorem [15] (this source also provides a generalization weakening � 1

1 -
measurability to Borel measurability, which we do not consider separately because
our methods require weakening both of these conditions to universal measurability
anyway), which states the following.

Theorem 4.2.4. Let X be Polish, and F : X s !
! total with Gr(F) 2 ⌃1

1 such that
F(x) is a (non-empty) perfect subset of !! for each x 2 X. Then, there is a function
� : X ⇥ 2! !!

! such that for each x, �(x, ·) is a homeomorphism of 2! into F(x),
and for each y 2 2!, �(·, y) is � 1

1 -measurable as a function X !!
!.
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We weaken the � 1
1 -measurability to universal measurability, and instead of having

�(·, y) be measurable for each y , we view � alternately as a map X ! C(2!), and
force � to be measurable as such a map (the map C(2!) ! R given by evaluation
at any y 2 2! is continuous, so if � is universally measurable in this sense, then
�(·, y) will also be universally measurable for each y ; also, we use that !! embeds
into R as the set I of irrational numbers, so we can take an element f 2 C(2!) as a
continuous map 2! !!

! if f(a) 2 I for all a 2 2!).

Proof (with MC). Let us first establish a bound on the complexity of the subset H ✓
C(2!) of continuous functions that are homeomorphisms onto their image (i.e. are
one-to-one and have continuous inverses). The condition that h 2 C(2!) be one-to-
one is

8(x,y 2 2!)
✓
x = y or h(x) î h(y)

◆
,

which is ⇧1
1. The condition that there exist a continuous inverse j is

9(j 2 C(2!))8(x 2 2!)
✓
j(f (x)) = x

◆
,

which is ⌃1
2. Thus, H 2 ⌃1

2.
We construct a choice set C for the function � : X ! C(2!). For each x 2

X, we firstly require �(x) 2 H so that �(x) is a homeomorphism. Let us fix a
homeomorphism ↵ : I !!

!. Then, we require that img(�(x)) ✓ I , and that ↵��(x)
is onto F(x). In general, for f 2 C(2!), the property of img(f ) ✓ I is that 8(x 2
2!)(f (x) 2 I) which since I is Borel is a ⇧1

1 condition.
And, the property that ↵ � f be onto F(x) is in the most immediate form

8(y 2!!
)9(z 2 2!)

✓
(x,y) 2 F ! ↵(f (z)) = y

◆
,

but this would give us a complexity bound of ⇧1
2 which is undesirable as a measurable

cardinal does not in that case ensure a measurable selection. So, we instead fix a
countable dense subset {zi}i2! of 2!, and write the equivalent condition

8(y 2!!
)8(n 2!)9(i 2!)

✓
(x,y) 2 F ! d(↵(f (zi)),y) <

1
n

◆
,

where d is a fixed metric for Baire space. This is an equivalent condition because the
image of a dense set under a continuous map (the ↵(f (zi)) in our case) is dense in
the map’s image. Now, we recall that Gr(F) 2 ⌃1

1, whereby the inner condition is ⇧1
1

(as it is the negation of (x,y) 2 F that occurs upon expanding the implication), and
so the entire condition is ⇧1

1.
So, the choice set C is ⌃1

2, and total because there exists by the classical result
mentioned above a homeomorphism of 2! into any non-empty perfect subset of
any Polish space (note that this is the only part of the proof where the assumption
that F is perfect-valued is used; in particular, we could strengthen the statement
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to allow F(x) to be in any class of sets that is known to contain a homeomorph
of Cantor space. For instance, we can just impose that F(x) be uncountable and
have the perfect set property; it follows from sufficiently large cardinals that every
projective set has the perfect set property; in ZFC we have the perfect set property
for ⌃1

1 sets [13, Theorem 12.2], and with a measurable cardinal we also have it for
⌃1

2 [13, Exercise 27.14]). Thus, with a measurable cardinal we obtain the required
universally measurable selection.

Remark. The above proof is very uneconomical in the computations of the complex-
ities of many of the sets involved, particularly the set H of homeomorphisms in
C(2!), which as is shown in [15] is just a G� set (and thus, curiously, is itself a Polish
space) using countable quantifications over a countable basis of 2! in place of our
uncountable quantifications over 2! itself, though a fair amount of very elementary
but convoluted argument is required to show that e.g. the existence of a continuous
inverse can be established in this way; the naive approach taken above has its usual
advantage of subsuming many such difficulties.

We can also consider a parametrized version of the other important universality
property of the Cantor space, which is that every compact metric space is a con-
tinuous image of the Cantor space.

In particular, we consider Srivastava’s selection theorem for compact-valued mul-
tifunctions [22, Theorem 4.2]. We replace the arbitrary measurable space involved
there with a standard Borel space, and replace the measurability with respect to its
� -algebra with universal measurability, yielding the following weakened statement.

Theorem 4.2.5. Let X,Y be Polish, and F : X s Y a compact-valued, Borel-measurable
multifunction. Then, there is a map f : X ⇥ 2! ! Y , such that:

• For each x 2 X, f(x, ·) is continuous and maps 2! % F(x).

• For each c 2 2!, f(·, c) is universally measurable.

Proof (with MC). We first note that we do not need the explicit tree structure of the
Cantor space for this proof, rather the only necessary properties are that 2! is com-
pact, and universal for compact metric spaces as mentioned above.

We begin with the same remark as in the original proof: we may assume Y is
compact, since any Polish space embeds into a compact metric space (the Hilbert
cube). Then, let S be the space of continuous functions 2! ! Y , with the topology
arising from the supremum metric. This is a Polish topology, so S is a Polish space
and in light of the first condition on f , we may treat f instead as a map f : X ! S,
where x , f(x, ·). Write e : S ⇥2! ! Y for the map that evaluates s 2 S at c 2 2!; it
is easy to see that this map is continuous. The condition that f(x, ·) map into F(x)
can be written as

8(c 2 2!)
✓
(x, e(f (x), c)) 2 Gr(F)

◆
,
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and the condition that f(x, ·) be onto F(x) could naively be written as

8(y 2 Y)9(c 2 2!)
✓
(x,y) 2 Gr(F)! e(f(x), c) = y

◆
.

However, this is a ⇧1
2 condition, which we would like to avoid (as ⇧1

2 sets are not
easily uniformized). Fortunately, since e is continuous, it suffices for its image to
contain a countable dense subset of F(x), which conveniently exists because F(x) is
a compact metric space. So, let {y(x)

i
}i2! be a countable dense subset of F(x), then

the condition that f(x, ·) be onto F(x) can be better written,

8(i 2!)9(c 2 2!)
✓
(x,y) 2 Gr(F)! e(f(x), c) = y(x)

i

◆
.

We construct a choice set A ✓ X ⇥ S by declaring (x, s) 2 A if and only if

8(c 2 2!)
✓
(x, e(s, c)) 2 Gr(F)

◆
,

and

8(i 2!)9(c 2 2!)
✓
(x,y) 2 Gr(F)! e(s, c) = y(x)

i

◆
.

Since Gr(F) is Borel and e is continuous, all the inner conditions here are Borel, so
the first condition collectively is ⇧1

1, and the second is ⌃1
2. Hence, A 2 ⌃1

2(X ⇥ S).
We also want to show that each section of A is non-empty; i.e. there always exists a
continuous map 2! % F(x) for any x. But this is immediate from the universality of
2! mentioned above, since F(x) is compact.

By Kondô’s theorem, A then has a ⌃1
2 uniformization f : X ! S, which is thus �1

2-
measurable as a function. It remains to show that f(·, c) is universally measurable
for each c. That is, we want to show that for fixed c, the set of x for which f(x, c) 2
U for some open U ✓ Y is universally measurable. This condition is equivalently
e(f(x), c) 2 U , or (f (x), c) 2 e�1

(U), the latter set being open since e is continuous.
The set of s for which (s, c) 2 e�1

(U) for fixed c is open since it is a section of an
open set, and so the set of x in question is f�1

(V) for some open V , and thus is �1
2.

Assuming a measurable cardinal, f(·, c) is then universally measurable.

This sort of theorem can be seen as generalizing the theorems finding a countable
family of selections that “fills up” a choice set (either exactly when the sections are
countable, or by being dense in each section when they are not), to doing this fill-
ing exactly even when the sections are uncountable sets. A useful survey of such
theorems, due to Mauldin, can be found in [17].

4.2.4 Stochastic Programming

Here, we consider a parametrized version of a broad class of optimization problems,
given by the following model (taken from [7]): let X,U,Y be Banach spaces (later
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assumed separable as well, which ensures that they are Polish spaces as well),Qx ✓ X
and Qu ✓ U , T : Qx⇥Qu s Y a multifunction, and S : Qx⇥Qu an objective function.
Then, we are interesting in maximizing S(x,u) subject to (x,u) 2 Qx ⇥ Qu, and
0 2 T(x,u) (perhaps a more reasonable-seeming constraint would be to have T be
single-valued and just require T(x,u) = 0, but this version, as noted by Engl in
[7], subsumes that and also covers inequality constraints, for instance T(x,u) � 0,
without any further modification).

The parametrization (the description taken from the same source) is over an ar-
bitrary measurable space (⌦,F), where Qx : ⌦ s X and Qu : ⌦ s U are now measur-
able and closed-valued multifunctions. We define the multifunction Qx ⇥Qu : ⌦ s
X ⇥ U by (Qx ⇥Qu)(!) = Qx(!) ⇥Qu(!), and the topological space CB(Y) as the
space of closed, bounded subsets of Y equipped with the Hausdorff distance.

Then, we take the constraint function to be T : Gr(Qx ⇥Qu) ! CB(Y), “measur-
able” in the sense that for all (x,u) 2 X ⇥ U and D ✓ Y open, we have that the
set

{! 2 ⌦ : x 2 Qx(!),u 2 Qu(!), T(!, x,u)\D î ú}

is in F (i.e. is measurable in ⌦). Similarly, we take the objective function to be S :
Gr(Qx ⇥ Qu) ! R, likewise “measurable” in the sense that for (x,u) 2 X ⇥ U and
D ✓ R open, the set

{! 2 ⌦ : x 2 Qx(!),u 2 Qu(!), S(!, x,u) 2 D}

is in F . The functions T and S are also presumed jointly continuous in x and u, for
a fixed ! 2 ⌦ in the first argument.

Let us write P(!, x,u) for the proposition that is the conjunction of x 2 Qx(!),
u 2 Qu(!), and 0 2 T(!, x,u) (i.e. the criterion for (x,u) to be an “admissible”
point for the maximization problem at outcome!). We are then interested in finding
measurable functions x : ⌦ ! X and u : ⌦ ! U such that for all ! 2 ⌦, we have
P(!, x(!),u(!)), and

S(!, x(!),u(!)) = sup
x,u s.t. P(!,x,u)

S(!, x,u).

(In [7], part of the desired result is also that this latter supremum function be mea-
surable as a function ⌦ ! R, but this is a property of the described problem, not the
solution, and as shown there under the stated assumptions this function is always
measurable anyway, so we do not examine this part further.) Such a pair of functions
is termed a stochastic solution to the maximization problem framed above. A deter-
ministic solution at a particular random outcome ! 2 ⌦ is just a pair (x,u) that at
this ! satisfies P(!, x,u) and the above maximization condition (i.e. a solution to
the non-randomized problem, as described briefly earlier, induced by fixing !). The
main question here is then whether the existence of a deterministic solution at each
! ensures the existence of a stochastic solution (which must be measurable over ⌦
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and thus cannot just consist of deterministic solutions “glued together” arbitrarily).
The below theorem from [7] answers this question.

Theorem 4.2.6. In the arrangement described above, the maximization problem de-
fined by Qx,Qu, S, T has a stochastic solution if and only if it has a deterministic
solution at each ! 2 ⌦ (a stochastic solution immediately yields deterministic solu-
tions at each !, so only the “if” implication is non-trivial).

To cast this in the terms we have been dealing with previously, we take ⌦ to be a
Polish space and F to be its Borel sets (so that ⌦ as a measurable space is a standard
Borel space), and note that U,X,Y are all Polish spaces already (being separable Ba-
nach spaces). Thus, Qx ⇥Qu is a Borel measurable multifunction, and so its graph
G = Gr(Qx ⇥Qu) ✓ ⌦ ⇥X ⇥U is also Borel. As usual, we will prove the result giving
universally measurable functions x, u, not Borel measurable ones.

Proof (with MC). We construct both functions at once as a single function (x,u) :
⌦ ! X ⇥ U (notice that though taking X and U to be separate spaces is important in
the original formulation, we are basically just interested in the Polish space X ⇥ U ).
If we produce a universally measurable such function, then its components will give
the desired universally measurable x and u. Our choice set C ✓ ⌦ ⇥ X ⇥ U then
consists of (!, x,u) 2 ⌦ ⇥ X ⇥ U that satisfy P(!, x,u) and also the maximization
condition:

S(!, x,u) = sup
x0,u0 s.t. P(!,x,u)

S(!, x
0
, u

0
).

We can rewrite this as

8
�
(x

0
, u

0
) 2 X ⇥U

�✓
S(!, x

0
, u

0
)  S(!, x,u)

◆
,

where since S is continuous in the last two arguments jointly, the inner condition is
a Borel condition, and so this entire condition is ⇧1

1.
It remains to establish the complexity of P(!, x,u), which is the condition that

x 2 Qx(!), u 2 Qu(!), and 0 2 T(!, x,u). Since Qx and Qu are Borel maps, they
have Borel graphs, and so the conditions x 2 Qx(!) and u 2 Qu(!) are Borel. Since
T as a multifunction ⌦ s X ⇥ U ⇥ Y is Borel measurable, it has a Borel graph. The
set of (!, x,u) that satisfy P is the projection of the intersection of this graph with
the subset of ⌦⇥X ⇥U ⇥ Y with 0 in the last coordinate (in the general Polish space
context, we can view 0 as an arbitrary distinguished point). So, the set of points
satisfying P(!, x,u) is ⌃1

1. Thus, the choice set C is �1
2 (the intersection of a ⌃1

1 and a
⇧1

1). We have that C as a multifunction ⌦ s X ⇥ U is total by assumption (according
to the existence of deterministic solutions), and so with a measurable cardinal we
have the desired universally measurable selection.
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4.3 Inverse and Implicit Function Theorems

We saw at the beginning that the question of the existence of left inverses for func-
tions was basically identical to the question of selection from the graphs of those
functions. In particular, our work earlier immediately implies that any Borel map
has a universally measurable left inverse. We now consider a few variations on this
theme.

4.3.1 Jankoff’s Right Inverse Theorem

The most natural place to begin is, of course, with right inverses.

Theorem 4.3.1 (Jankoff). Let X,Y be Polish spaces, and F : X ! Y be a Borel map
that is surjective onto E 2 ⌃1

1(Y) (in the original version, X is a Suslin space, or equiv-
alently an analytic subspace of some Polish space, but any such space is a continuous
image of a Polish space, and composing F with this continuous map puts us in the
above setting). Then, there is a map G : Y ! X such that F �G is the identity on E, G
is � 1

1 (Y)-measurable, and G(E) 2 � 1
1 (X).

We will give a proof of this theorem with the measurability conclusion weakened to
universally measurability in the conclusion, and likewise the condition on G(E) weak-
ened to universal measurability, assuming the existence of a measurable cardinal.

Proof (with MC). Let us construct a subset A ✓ Y⇥X by its sections, A(y) = F�1
({y})

if this set is non-empty, and A(y) = X otherwise (in other words, this is the graph
of the inverse multifunction of F , with empty “slices” filled in). Then, every section
over y 2 Y of this graph is non-empty by construction. Note that A = Gr(F)[Ec⇥X,
where Gr(F) is interpreted to be the actual graph of F but flipped to lie in Y ⇥ X
rather than X ⇥ Y .

Since F is a Borel map, Gr(F) is Borel, and E
c ⇥ X is ⇧1

1, thus A 2 ⇧1
1. Then,

UnivSel(⇧1
1) gives a universally measurable selection of A, and such a selection G

clearly satisfies the condition of being a right inverse for F (with no measurable
cardinal assumption, we would get a �1

2-measurable selection, which is also weaker
than the result in the theorem, as � 1

1 is strictly contained in �1
2).

Also, recall that we produce this selection by starting with a uniformization from
the hypothesis Unif(⇧1

1), and thus Gr(G) 2 ⇧1
1. We have G(E) = ⇡X(Gr(G)\ (E⇥X)),

where E ⇥ X is ⌃1
1, so this belongs to 9!!�1

2 = ⌃1
2 and so is universally measurable

assuming a measurable cardinal.
Note that this method still works under weaker assumptions; in particular, we

do not need F to be a Borel map, but only to have its graph be in ⌃1
2 (and assum-

ing Woodin cardinals allows this bound on complexity to be pushed further up the
projective hierarchy, and likewise the bound on the complexity of E).
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The significantly more involved standard proof can be found in [3]. In the final re-
mark of the proof we see another feature that is common to measurable selection
proofs conducted with the large cardinal approach: it is possible to incrementally
weaken the assupmtions of our results (moving some measurability assumption up
the � 1

↵ sequence of � -algebras) by assuming more large cardinals (the details of this
are usually sufficiently clear that we may omit them later).

4.3.2 Filippov’s Implicit Function Theorem

We now turn to a selection theorem that (under various permutations of differing as-
sumptions) generalizes the above two results, and is central to the theory of optimal
control. Below we work with the version in [24, Theorem 2.3.13], which generalizes
Filippov’s original result slightly (and casts it into a setting that is convenient to ex-
press in terms of Polish spaces), but there have been a variety of generalizations and
variations in the literature. From the version in [24], we replace real spaces Rk with
arbitrary Polish spaces to obtain the following.

Theorem 4.3.2 (Generalized Filippov Selection Theorem). Let X,Y ,Z be Polish, and
let F : X s Y be a total multifunction with Gr(F) 2 L(X)⌦B(Y), and let g : X⇥Y ! Z

be a function that is L(X) ⌦ B(Y)-measurable. Then, for any Lebesgue-measurable
map v : X ! Z , if we have

v(x) 2 {g(x,y) : y 2 F(x)}

for almost all x (in the Lebesgue sense), then there is a Lebesgue-measurable function
u : X ! Y that is a selection for F almost everywhere, and we also have g(x,u(x)) =
v(x) for almost all x.

We must adapt this somewhat to be accessible by our methods. First, we remove all
Lebesgue almost-all conditions, then convert all references to the Lebesgue � -algebra
L to the analytic � -algebra � 1

1 —this is a stronger assumption (� 1
1 sets are Lebesgue

measurable). Lastly, we change the conclusion to universal measurability (this is even
slightly stronger than the reference version above).

Theorem 4.3.3 (Adapted Filippov Selection Theorem). Let X,Y ,Z be Polish, and let
F : X s Y be a total multifunction with Gr(F) 2 � 1

1 (X ⇥ Y), and let g : X ⇥ Y ! Z be
a function that is � 1

1 -measurable. Then, for any � 1
1 -measurable map v : X ! Z , if we

have
v(x) 2 {g(x,y) : y 2 F(x)}

for all x, then there is a universally measurable function u : X ! Y that is a selection
for F , and such that g(x,u(x)) = v(x) for all x.
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Proof (with MC). An equivalent condition is that u be a universally measurable selec-
tion on the set

A = {(x,y) : g(x,y) = v(x)}\ Gr(F),

where by assumption each section A(x) of A is non-empty. We have a direct assump-
tion on the complexity of Gr(F), and we can write the first set above as

{(x,y) : g(x,y) = v(x)} = ⇡X⇥Y (Gr(g)\ (Gr(v)⇥ Y)),

where Gr(v)⇥Y takes the Cartesian product in the middle coordinate, so that Gr(g)
and Gr(v)⇥ Y can both be taken to lie in X ⇥ Y ⇥ Z . Since all graphs in question are
�

1
1 , we have that A is � 1

1 as well, and thus has a universally measurable selection,
assuming a measurable cardinal.

Indeed, for use with our proof, this formulation is somewhat stilted, because we are
actually primarily interested in the graphs of F, g, and v , not their measurability. In
particular, it suffices to assume Gr(F),Gr(g),Gr(v) 2 ⌃1

2 for this proof to go through.

4.4 Approximate Optimization Theorems

In this section we consider selection theorems where the selections must satisfy an
explicit metric property, an approximation property of an objective function depend-
ing on an error parameter ✏.

4.4.1 Uniformly Approximating Objective Function Extrema

Definition 4.4.1. For X,Y Polish spaces, D ✓ X ⇥ Y , and f : D ! [�1,1] a function,
define for x 2 ⇡X(D):

f⇤(x) = inf
y2Dx

f (x,y),

f
⇤
(x) = sup

y2Dx
f (x,y).

For our purposes, the distinction here is not at all important (i.e. we can negate f
to switch from infimum to supremum without affecting any descriptive complexity
considerations); we will thus write our theorems in terms of one of these functions
to conform with the source material, but analogous statements will always hold for
the other function as well. We will be looking below at these functions when f is a
Borel map. It is easy to see that f⇤ and f⇤ need not be Borel when f is Borel.

Definition 4.4.2. For X a Polish space and D ✓ X, a function f : D ! [�1,1] is
lower semianalytic if for all c 2 R and c = ±1, any of the following equivalent sets
of conditions hold:

• {x 2 X | f(x) < c} 2 ⌃1
1(X).
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• {x 2 X | f(x)  c} 2 ⌃1
1(X).

• {x 2 X | f(x) > c} 2 ⇧1
1(X).

• {x 2 X | f(x) � c} 2 ⇧1
1(X).

It is upper semianalytic if any of these hold with the inequalities reversed (or with ⌃1
1

and ⇧1
1 swapped).

In particular, we note that any function of either class is automatically � 1
1 -measurable.

We have
f
⇤
(x) > t $ (9y 2 Y)(f(x,y) > t),

hence if f is Borel, then f⇤ is upper semianalytic, and by the same token f⇤ is lower
semianalytic. And so, both of these functions are � 1

1 -measurable (and, as will be
useful in relation to a further variant of this theorem, if f is lower semianalytic then
f⇤ is still lower semianalytic, and likewise for upper semianalyticity and f⇤).

We investigate here the question of approximating the points realizing the val-
ues of the extremal functions f⇤ and f⇤ on a planar set by a uniformly converging
sequence of regular functions, as in the below theorem, considered in [1].

Theorem 4.4.3. Let X,Y be Polish spaces, G : X s Y with Gr(G) 2 ⌃1
1(X ⇥ Y). Let

u : X ⇥ Y ! R be a non-negative Borel function. Then, there is a uniformly con-
vergent sequence �i : X ! Y of maps that are universally measurable such that
limi!1u(x,�i(x)) = u⇤(x), where this limit holds uniformly in x over those x for
which u⇤(x) <1.

The same statement holds symmetrically for u⇤ as well.

Proof (with MC). As usual for countable sequences of selections, we construct a sin-
gle function � : X ! Y

! and use its coordinates as our �i; if � is universally measur-
able then so are all of the �i. The condition

lim
i!1

u(x,�i(x)) = u⇤(x) = sup
y2G(x)

u(x,y)

can be written

8(y 2 G(x))
✓
u(x,y)  lim

i!1
u(x,�i(x))

◆
.

We define the function ⇡ : Y! ⇥! ! Y where ⇡(r , i) is the projection of r onto the
ith coordinate, so that we can write the inner condition as

8(m 2 N+)9(n 2 N)8(i > n)
✓
u(x,y) < u(x,⇡(�(x), i))+ 1

m

◆
,

so the graph of � is a subset of the set (x, z) such that

8(y 2 G(x))8(m 2 N+)9(n 2 N)8(i > N)
✓
u(x,y) < u(x,⇡(z, i))+ 1

m

◆
,
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let us call this set A. Since u is a Borel function and ⇡ is continuous, this entire
condition up to the quantifier 8(y 2 G(x)) is Borel (in the collection of all variables
present). And, since Gr(G) 2 ⌃1

1, we have that A is ⇧1
1.

So, if � is a selection of A, then limi!1u(x,�i(x)) = u⇤(x) for all x. Now, we
want to ensure that over the x for which u⇤(x) < 1, this convergence is uniform.
Note that general uniform convergence is not a condition that is easily handled by
the sorts of constructions we have been doing, since it cannot be written as the
conjunction of individual local conditions at each x. However, in this case we can
use a simple restriction to overcome this. Let us choose a sequence of arbitrary
functions ↵i such that u(x,↵i(x)) ! u

⇤
(x) uniformly when u⇤(x) < 1 (for each

x, there is a sequence of ai so that u(x,ai) ! u
⇤
(x), and we can just form the ↵i

by choosing the ai from these sequences for each x so as to make the convergence
uniform). This means that for any k 2 !, there is N(k) 2 ! such that whenever
i > N(k), we have u(x,↵i(x)) > u⇤(x)� 1

k
for all x.

Then, we simply impose this specific “regime” of uniform convergence on the
graph of �. Let I be the set where u⇤(x) < 1; since u⇤ is upper semianalytic, we
have I 2 ⌃1

1(X). Now, we form another choice set B ✓ X ⇥ Y! where now (x, z) 2 B
if and only if

8(k 2!)8(i 2!)
✓
x 2 I and i > N(k)! u(x,⇡(z, i)) > u

⇤
(x)� 1

k

◆
,

which is a ⇧1
1 condition.

We will have the desired result if � is a selection from A \ B, which is a ⇧1
1 set

and is total since the graph of the function (↵1,↵2, . . . ) chosen arbitrarily earlier is in
this set. With a measurable cardinal, we obtain the required universally measurable
selection.

4.4.2 The Exact Selection Theorem

It is also possible to provide a more explicit construction of such a sequence of
measurable functions uniformly approximating the extrema of f . We consider here
a selection theorem central to the area of dynamic programming, which concerns
selections closely approximating the infimum of a function over sections of a set.
The following is the basic form of the exact selection theorem, first proved in [4].

Theorem 4.4.4 (Borel Exact Selection Theorem). Let X,Y be Polish spaces, D ✓ X ⇥
Y a Borel subset, f : D ! [�1,1] a Borel measurable function, and define the sets

G = ⇡X(D),
I = {x 2 G | 9(y 2 Dx)(f(x,y) = f⇤(x))}.

Then, both of these sets are universally measurable. Moreover, for each ✏ > 0, there
exists a universally measurable selection ' : X ! Y of D such that:
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• If x 2 I, then f(x,'(x)) = f⇤(x).

• If x 2 G \ I and f⇤(x) > �1, then f(x,'(x))  f⇤(x)+ ✏.

• If x 2 G \ I and f⇤(x) = �1, then f(x,'(x))  �1
✏
.

This formulation generalizes the contexts of a fairly wide range of other selection
theorems, perhaps the most prominent among them being the Dubins-Savage selec-
tion theorem from dynamic programming (a good reference and proof can be found
in [14]), where the function f is assumed bounded, Y compact, and D of the form
B ⇥ Y for some B ✓ X Borel, so that G = I = B and the infimum is achieved on every
section, so ✏ is irrelevant.

Note also that the specific function �1
✏

is not essential here, any continuous func-
tion decreasing to �1 as ✏ ! 0 from above will do. Indeed, we will see in the proof
below that much of the structure of this problem is not strictly essential.

Proof (with MC). We immediately have that G is analytic and thus universally mea-
surable, and the condition f(x,y) = f⇤(x) used in defining I can be written as

✓
f(x,y) = f⇤(x)

◆
$ (8z 2 Y)

✓
(x, z) 2 D ! f(x,y)  f(x, z)

◆

The inner condition is Borel (as D is Borel and f is a Borel map), so f(x,y) = f⇤(x)
is a ⇧1

1 condition. The set I is the projection of the (x,y) for which f(x,y) = f⇤(x)
onto X, and so I 2 ⌃1

2(X), and so is also universally measurable.
To construct the measurable selection, our earlier example of handling piecewise

functions will be useful, as the desired properties of the selection are phrased as
independent conditions over disjoint possible values of x. We define a separate
choice set for each condition above:

C1 = {(x,y) : f(x,y) = f⇤(x)},
C2 = {(x,y) : f(x,y)  f⇤(x)+ ✏},

C3 =
⇢
(x,y) : f(x,y)  �1

✏

�
.

The set C1 is the set of points satisfying the condition f(x,y) = f⇤(x), which we
saw above was ⇧1

1. The set C2 is the set of points satisfying the condition f(x,y) 
f⇤(x)+ ✏, which can be written as

8(n 2!+)9(z 2 Y)
✓
(x, z) 2 D and f(x,y) < f(x, z)+ ✏+ 1

n

◆
,

where the inner condition is Borel and so C2 is ⌃1
1. Lastly, the set C3 is the set of

points satisfying f(x,y)  �1
✏
, which is Borel since f is a Borel map. In particular,

all Ci are ⌃1
2, so from Kondô’s theorem in conjunction with 3.1.3 we have that each

Ci has a �1
2-measurable selection, call it �i for i = 1,2,3.
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Now, define the domain sets

D1 = I,
D2 = (G \ I)\ {x : f⇤(x) > �1},
D3 = (G \ I)\ {x : f⇤(x) = �1}.

Since f⇤ is lower semianalytic, the condition f⇤(x) > �1 is ⇧1
1, and the condition

f⇤(x) = �1 is the conjuction of f⇤(x)  �1 and f⇤(x) � �1, which are ⌃1
1 and

⇧1
1 respectively, so f⇤(x) = �1 is �1

2. We also have I 2 ⌃1
2 and G 2 ⌃1

1, and so
I,G \ I 2 �

1
2 . In particular, all the sets involved in defining D1,D2, and D3 are � 1

2 ,
thus D1,D2, and D3 are themselves � 1

2 .
Now, we construct the selection � by defining it piecewise, taking �(x) = fi(x)

whenever x 2 Di, and completing the selection by an arbitrary � 1
2 -measurable func-

tion on X \ G (equivalently G \ (D1 [D2 [D3)). Then, the preimage of any Borel set
under� is � 1

2 in X, since it is equal to the union of the preimages under the fi and the
arbitrary function above, all of which are � 1

2 -measurable. Thus, � is � 1
2 -measurable,

as is its restriction to G, since G is ⌃1
1. Assuming a measurable cardinal, we then have

that � is universally measurable, as desired.

A few extensions are possible without too much difficulty. First, we can weaken the
restriction on f to being lower semianalytic, since then f⇤ is still lower semianalytic
and f is � 1

1 -measurable, so the set I is � 1
1 -measurable and still universally measur-

able. In the selection construction, the Ci are all still at most ⌃1
2, and thus the proof

still goes through. Also, it is easy to check that it is enough to assume D 2 ⌃1
1 (G is

still ⌃1
1, and the complexity of C1 and thus I does not change). This strengthened ver-

sion is derived by classical means in [2], where it is the main ingredient in the proof
of a parametrized/randomized version of Fan’s minimax theorem from continuous
game theory.
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