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Unit-Norm Tight Frames: Special Kinds

We like UNTFs with only a few different values of Pj; (angles or distances
among their vectors).

» Equiangular: P € {, —«} for all i # j.
» Two-distance: P; € {«, B} forall i # j.

€,



This Talk:

How to take a very nice UNTF and build a bigger,
slightly less nice UNTF.

But mostly, the strange way we found this
construction.



Motivation

References (2018-2019):

(1) A Gramian description of the degree 4 generalized elliptope

(2) SoS optimization and the sparsity structure of equiangular tight frames

(3) A tight degree 4 SoS lower bound for the Sherrington-Kirkpatrick Hamiltonian
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Relaxations of MaxCut

The degree 2 sum-of-squares (SoS) relaxation:
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Relaxations of MaxCut

The degree 2 sum-of-squares (SoS) relaxation:
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Did You Notice?

The constant multiples of projection matrices in &,"
are exactly the Gram matrices of UNTFs.

More on that in a minute...



Back to MaxCut...How to Improve?
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Back to MaxCut...How to Improve?

The degree 4 SoS relaxation:
max (A, xx") < max (A, X).

xe{x1}N X extended by Y
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Back to MaxCut...How to Improve?

The degree 4 SoS relaxation:

EN = {X € RNV - X extendable like this}.
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Our Specific Problem

How to approximate:

A+AT
M= max x'Wx for W =
xe{=1}N

~ GOE(N) ?

M = (1.5% + o(1))N3/2 [Parisi 1979]. Algorithmic upper bounds: M < - - -

Bound Value Reference

Amax (W) - [Ix]12 (2 + 0o(1))N3/2 [Wigner 1955]
Degree 2 SoS (2 +0(1))N3/2  [Montanari, Sen 2016]

Degree 4 SoS (2 4+ o(1))N3/2  [Bandeira, K. 2019]
[Raghavendra et al 2019]
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The Degree 2 SoS Construction

Take X =~ 6~ ' P for P the projection matrix to the top 6N eigenvectors of W.

Observation: X is “nearly” the Gram matrix of a UNTF!

[Montanari, Sen 2016] SDPs on sparse random graphs and their application...



So We Wondered...

What do degree 4 extensions of Gram matrices of
UNTFs look like?



The Case of ETFs

Theorem. The Gram matrix of an ETF of N vectors in R" is degree 4
extensible if and only if

rir+1)

—

N <
If so,

r(r-1) rz(-l _l) N

. 2 N

Yoy *= m(xijxk# + XikXje + XieXjk) — e > XimXjmXemXem
2 2 m=1

gives an extension.

[Bandeira, K. 2018] A Gramian description of the degree 4 generalized elliptope
[Bandeira, K. 2019] SoS optimization and sparsity structure of equiangular tight frames



Resolving the Gaussian Case

Pretend X = 8 'P is an ETF, and use the same formula. With a small
correction, this shows X € &), so we get...
Theorem. When W ~ GOE(N),

max{(W, X) = (2 + o(1))N3/?
xe&N

with high probability.

[Bandeira, K. 2019] A tight degree 4 SoS lower bound for the SK Hamiltonian



New Structured UNTFs

Reference (SPIE 2019):
Connections between SoS optimization and structured tight frames



So...Where Did This Come From?
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Spectral Constraints

Y is complicated entrywise, but simple spectrally:
Y = vec(X)vec(X)" + AP.

P is the projector to a subspace of R¥ where all of the eigenvectors of
Y —vec(X)vec(X)" must lie (for any degree 4 extension).
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Spectral Constraints

Y is complicated entrywise, but simple spectrally:
Y = vec(X)vec(X)" + AP.

P is the projector to a subspace of R¥ where all of the eigenvectors of
Y —vec(X)vec(X)" must lie (for any degree 4 extension).

(Namely, P projects to the vectorized perturbation subspace of X in &'.)

[Bandeira, K. 2018] A Gramian description of the degree 4 generalized elliptope
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Hang On...

P is a projection matrix. What is its diagonal?

diag(P) = A~ 'diag(Y — vec(X)vec(X)")
= A7 (1 = vec(X) o vec(X)).

But X is the Gram matrix of an ETF:

1 =

— Y2 — ’

(vec(X) o vec(X)) ) = Xjj = { o2 it
Corollary. Let X be the Gram matrix of a non-maximal ETF. Then, the

minor of P indexed by (ij) with i < j is a “UNTF projector.” Its UNTF
consists of w — N vectors in RN(N-1/2,



Example: Simplex ETFs ~ Johnson TDTFs

The simplest ETFs:
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Example: Simplex ETFs ~ Johnson TDTFs

The simplest ETFs:
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“Degree 4 lifting” ~ two-distance UNTF of Johnson graph:
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Open Problems

v

Counting distances in degree 4 liftings

v

Structure of “entry graphs” of resulting few-distance UNTFs

v

Relation to line graph construction

v

Generalization to higher degree SoS



Thank you!



Where Does P Project?

Definition. For K ¢ R a closed convex set and X € K,
pert,(X) == {A: X = tA € K for all t sufficiently small}.

(Or, the affine hull of the smallest face containing X.)

Then, P projects to vec(pertngv (X)).
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