Gramian constructions of SOS lower bounds and the spectra of pseudomoments

Dmitriy (Tim) Kunisky

Yale University

SIAM Applied Algebraic Geometry

$$
\text { July 14, } 2023
$$

I. Introduction

Certifying Bounds on Quadratic Forms

Certifying Bounds on Quadratic Forms

Goal: Build efficient algorithms taking in $W \in \mathbb{R}_{\text {sym }}^{n \times n}$ and outputting upper bounds on

$$
\operatorname{opt}(\boldsymbol{W}):=\max _{\boldsymbol{x} \in\{ \pm 1\}^{n}} \boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}
$$

Certifying Bounds on Quadratic Forms

Goal: Build efficient algorithms taking in $W \in \mathbb{R}_{\text {sym }}^{n \times n}$ and outputting upper bounds on

$$
\operatorname{opt}(\boldsymbol{W}):=\max _{\boldsymbol{x} \in\{ \pm 1\}^{n}} \boldsymbol{x}^{\top} W \boldsymbol{x} .
$$

Applications and motivations:

- Maximum cut in graphs
- Community detection in graphs
- Statistical physics: ground states of Ising models (Sherrington-Kirkpatrick model especially prominent)
- Statistics toy problems:
- Spiked matrix models
- "Planted" vector in a random subspace

Sum-of-Squares: Algebraic Proof Formulation

Familiar to this audience: in time $n^{O(D)}$, can efficiently solve the (even) degree D SOS relaxation:
minimize c
subject to $c-\boldsymbol{x}^{\top} W \boldsymbol{x}=\sum_{i=1}^{n} p_{i}(x)\left(x_{i}^{2}-1\right)+\sum_{j} s_{j}(x)^{2}$, $\operatorname{deg}\left(p_{i}\right) \leq D-2$,
$\operatorname{deg}\left(s_{j}\right) \leq D / 2$.

Sum-of-Squares: Algebraic Proof Formulation

Familiar to this audience: in time $n^{O(D)}$, can efficiently solve the (even) degree D SOS relaxation:
minimize c
subject to $c-\boldsymbol{x}^{\top} W \boldsymbol{x}=\sum_{i=1}^{n} p_{i}(x)\left(x_{i}^{2}-1\right)+\sum_{j} s_{j}(x)^{2}$,

$$
\operatorname{deg}\left(p_{i}\right) \leq D-2,
$$

$$
\operatorname{deg}\left(s_{j}\right) \leq D / 2
$$

Can be written as a semidefinite program by relating polynomials $q(\boldsymbol{x})$ to representing matrices \boldsymbol{Q} with

$$
q(\boldsymbol{x})=\boldsymbol{m}(\boldsymbol{x})^{\top} \boldsymbol{Q} \boldsymbol{m}(\boldsymbol{x})
$$

for $\boldsymbol{m}(\boldsymbol{x})$ the vector of low-degree monomials in x_{1}, \ldots, x_{n}.

Sum-of-Squares: Pseudomoment Formulation

Maybe slightly less familiar: a formulation of the convex dual popular in theoretical computer science,

$$
\begin{aligned}
\operatorname{maximize} & \widetilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} W \boldsymbol{x}\right] \\
\text { subject to } & \widetilde{\mathbb{E}}: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq D} \rightarrow \mathbb{R} \\
& \widetilde{\mathbb{E}} \text { linear, } \\
& \widetilde{\mathbb{E}}[1]=1, \\
& \widetilde{\mathbb{E}}\left[\left(x_{i}^{2}-1\right) p(x)\right]=0 \text { for all } i \in[n], \\
& \widetilde{\mathbb{E}}\left[s(x)^{2}\right] \geq 0 .
\end{aligned}
$$

Sum-of-Squares: Pseudomoment Formulation

Maybe slightly less familiar: a formulation of the convex dual popular in theoretical computer science,

$$
\begin{aligned}
\operatorname{maximize} & \widetilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} W \boldsymbol{x}\right] \\
\text { subject to } & \widetilde{\mathbb{E}}: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq D} \rightarrow \mathbb{R} \\
& \widetilde{\mathbb{E}} \text { linear, } \\
& \widetilde{\mathbb{E}}[1]=1, \\
& \widetilde{\mathbb{E}}\left[\left(x_{i}^{2}-1\right) p(x)\right]=0 \text { for all } i \in[n], \\
& \widetilde{\mathbb{E}}\left[s(x)^{2}\right] \geq 0 .
\end{aligned}
$$

By linearity, enough to give pseudomoments $\tilde{\mathbb{E}}\left[x_{i_{1}} \cdots x_{i_{d}}\right]$, and positivity \Leftrightarrow pseudomoment matrix $M \succeq 0$, where

$$
M_{\left(i_{1}, \ldots, i_{d_{1}}\right),\left(j_{1}, \ldots, j_{d_{2}}\right)}:=\widetilde{\mathbb{E}}\left[x_{i_{1}} \cdots x_{i_{d_{1}}} x_{j_{1}} \cdots x_{j_{d_{2}}}\right]
$$

Sum-of-Squares Lower Bounds

General questions: How large do we need to take D for SOS to work well? What properties of W control this?

Sum-of-Squares Lower Bounds

General questions: How large do we need to take D for SOS to work well? What properties of W control this?

Negative results = lower bounds on the degree, saying that we need to take D large to achieve some quality of certified bound on opt($\boldsymbol{W})$.

Sum-of-Squares Lower Bounds

General questions: How large do we need to take D for SOS to work well? What properties of W control this?

Negative results = lower bounds on the degree, saying that we need to take D large to achieve some quality of certified bound on opt(\boldsymbol{W}).

Proof strategy: Construct a $\widetilde{\mathbb{E}}$, or equivalently a pseudomoment matrix \boldsymbol{M}, that is feasible for high-degree SOS but gives a poor bound:

$$
\tilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right] \gg \operatorname{opt}(\boldsymbol{W})=\max _{\boldsymbol{x} \in\{ \pm 1\}^{n}} \boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x} .
$$

Boils down to understanding the spectra of large patterned matrix functions of various W-can be very technical!

II. A Mystery in SOS Lower Bounds

Grigoriev-Laurent Lower Bound

Grigoriev-Laurent Lower Bound

Let n be odd. Pin down the degree needed for exactness:
Theorem: [Grigoriev '01, Laurent '03] For some W,

$$
\max _{\tilde{\mathbb{E}} \text { of degree } n-1} \tilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right]>\operatorname{opt}(\boldsymbol{W})
$$

Theorem: [Fawzi, Saunderson, Parrilo '16] For all W,

$$
\max _{\tilde{\mathbb{E}} \text { of degree } n+1} \widetilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right]=\operatorname{opt}(\boldsymbol{W}) .
$$

Grigoriev-Laurent Lower Bound

Let n be odd. Pin down the degree needed for exactness:
Theorem: [Grigoriev '01, Laurent '03] For some W,

$$
\max _{\tilde{\mathbb{E}} \text { of degree } n-1} \tilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right]>\operatorname{opt}(\boldsymbol{W})
$$

Theorem: [Fawzi, Saunderson, Parrilo '16] For all W,

$$
\max _{\tilde{\mathbb{F}} \text { of degree } n+1} \tilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right]=\operatorname{opt}(\boldsymbol{W}) .
$$

Bad W is $\boldsymbol{W}:=\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{\top}=$ projection to $\operatorname{span}(\mathbf{1})^{\perp}$. By parity,

$$
\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}=n-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n-\frac{1}{n},
$$

but can find $\tilde{\mathbb{E}}$ such that

$$
\tilde{\mathbb{E}}\left[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right]=n
$$

Choosing $\tilde{\mathbb{E}}$: First Steps

Equivalently, we want $\widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]=0$.

Choosing \tilde{E} : First Steps

Equivalently, we want $\tilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]=0$.
Symmetrization $\tilde{\mathbb{E}}[p(\boldsymbol{x})] \leftarrow \frac{1}{2}(\tilde{\mathbb{E}}[p(\boldsymbol{x})]+\widetilde{\mathbb{E}}[p(-\boldsymbol{x})])$ lets us assume without loss of generality $\tilde{\mathbb{E}}\left[x_{1} \cdots x_{2 k+1}\right]=0$.

Choosing $\tilde{\mathbb{E}}$: First Steps

Equivalently, we want $\widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]=0$.
Symmetrization $\tilde{\mathbb{E}}[p(\boldsymbol{x})] \leftarrow \frac{1}{2}(\tilde{\mathbb{E}}[p(\boldsymbol{x})]+\widetilde{\mathbb{E}}[p(-\boldsymbol{x})])$ lets us assume without loss of generality $\tilde{\mathbb{E}}\left[x_{1} \cdots x_{2 k+1}\right]=0$.

For even pseudomoments, guess:

$$
\begin{aligned}
0 & =\widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \tilde{\mathbb{E}}\left[x_{i}^{2}\right]+2 \sum_{1 \leq i<j \leq n} \tilde{\mathbb{E}}\left[x_{i} x_{j}\right] \\
& =n+n(n-1) a_{2} . \quad \text { (constraint + symmetry) }
\end{aligned}
$$

Choosing $\tilde{\mathbb{E}}$: First Steps

Equivalently, we want $\widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]=0$.
Symmetrization $\tilde{\mathbb{E}}[p(\boldsymbol{x})] \leftarrow \frac{1}{2}(\tilde{\mathbb{E}}[p(\boldsymbol{x})]+\widetilde{\mathbb{E}}[p(-\boldsymbol{x})])$ lets us assume without loss of generality $\tilde{\mathbb{E}}\left[x_{1} \cdots x_{2 k+1}\right]=0$.

For even pseudomoments, guess:

$$
\begin{aligned}
0 & =\tilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \tilde{\mathbb{E}}\left[x_{i}^{2}\right]+2 \sum_{1 \leq i<j \leq n} \tilde{\mathbb{E}}\left[x_{i} x_{j}\right] \\
& =n+n(n-1) a_{2} . \quad \text { (constraint + symmetry) }
\end{aligned}
$$

Solving leads to predict, for all $i \neq j$,

$$
\tilde{\mathbb{E}}\left[x_{i} x_{j}\right]:=a_{2}=-\frac{1}{n-1} .
$$

Choosing $\tilde{\mathbb{E}}$: Finishing the Job

Symmetrize over $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \leadsto$

$$
\widetilde{\mathbb{E}}\left[x_{i_{1}} \cdots x_{i_{2 k}}\right]:=a_{2 k}
$$

and expect these to satisfy

$$
\begin{aligned}
0 & =\widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2 k}\right] \\
& =\text { constant }+ \text { linear combination of } a_{2}, \ldots, a_{2 k-2}, a_{2 k}
\end{aligned}
$$

Choosing $\tilde{\mathbb{E}}$: Finishing the Job

Symmetrize over $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \leadsto$

$$
\widetilde{\mathbb{E}}\left[x_{i_{1}} \cdots x_{i_{2 k}}\right]:=a_{2 k}
$$

and expect these to satisfy

$$
\begin{aligned}
0 & =\widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2 k}\right] \\
& =\text { constant }+ \text { linear combination of } a_{2}, \ldots, a_{2 k-2}, a_{2 k}
\end{aligned}
$$

Solving simple combinatorial recursion gives the Grigoriev-Laurent pseudomoments,

$$
\widetilde{\mathbb{E}}\left[x_{i_{1}} \cdots x_{i_{d}}\right]=a_{d}=\mathbb{1}\{d \text { even }\} \cdot(-1)^{d / 2} \prod_{i=0}^{d / 2-1} \frac{2 i+1}{n-2 i-1}
$$

Laurent's Proof

$$
M_{S, T}:=a_{|S \triangle T|}
$$

(Symmetric difference appears from $x_{i}^{2}=1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Laurent's Proof

$$
M_{S, T}:=a_{|S \triangle T|}
$$

(Symmetric difference appears from $x_{i}^{2}=1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).

Laurent's Proof

Must check positivity of $\widetilde{\mathbb{E}} \Leftrightarrow \mathbf{0} \leq \boldsymbol{M} \in \mathbb{R}^{\binom{[n]}{\leq D / 2} \times\binom{[n]}{\leq D / 2}}$ with

$$
M_{S, T}:=a_{|S \triangle T|}
$$

(Symmetric difference appears from $x_{i}^{2}=1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).
Laurent's proof: Use interlacing; find a large kernel and a submatrix whose pdness may be checked by association scheme theory and hypergeometric series combinatorics.

Laurent's Proof

Must check positivity of $\widetilde{\mathbb{E}} \Leftrightarrow \mathbf{0} \leq \boldsymbol{M} \in \mathbb{R}^{\binom{[n]}{\leq D / 2} \times\binom{[n]}{\leq D / 2}}$ with

$$
M_{S, T}:=a_{|S \triangle T|}
$$

(Symmetric difference appears from $x_{i}^{2}=1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).
Laurent's proof: Use interlacing; find a large kernel and a submatrix whose pdness may be checked by association scheme theory and hypergeometric series combinatorics.

Observation: The eigenvalues of \boldsymbol{M} have interesting structure and high multiplicity. More direct proof possible?

Mystery: Eigenvalues of Pseudomoments

Read across the diagonals to see Laurent's recursion:

1	3	5	7	9	11
	0	0	0	0	0
1	1	$\frac{13}{8}$	$\frac{19}{12}$	$\frac{263}{128}$	$\frac{1289}{640}$
	$\frac{3}{2} \cdot 1$	$\frac{5}{4} \cdot 1$	$\frac{7}{6} \cdot \frac{13}{8}$	$\frac{9}{8} \cdot \frac{19}{12}$	$\frac{11}{10} \cdot \frac{263}{128}$
		$\frac{5 \cdot 3}{4 \cdot 2} \cdot 1$	$\frac{7 \cdot 5}{6 \cdot 4} \cdot 1$	$\frac{9 \cdot 7}{8 \cdot 6} \cdot \frac{13}{8}$	$\frac{11.9}{10 \cdot 8} \cdot \frac{19}{12}$
			$\frac{7 \cdot 5 \cdot 3}{6 \cdot 4 \cdot 2} \cdot 1$	$\frac{9 \cdot 7 \cdot 5}{8 \cdot 6 \cdot 4} \cdot 1$	$\frac{11 \cdot 9 \cdot 7}{10 \cdot 8 \cdot 6} \cdot \frac{13}{8}$
				$\frac{9 \cdot 7 \cdot 5 \cdot 3}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \quad 1$	$\frac{11 \cdot 9 \cdot 7 \cdot 5}{10 \cdot 8 \cdot 6 \cdot 4} \cdot \quad 1$
					$\frac{11 \cdot 9 \cdot 7 \cdot 5 \cdot 3}{10 \cdot 8 \cdot 6 \cdot 4 \cdot 2} \cdot \quad 1$

Not hard to predict multiplicities also.

Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

1. Build \boldsymbol{M} to satisfy the entrywise constraints, and...
2. observe that the spectral constraint "magically" holds.

This gets the job done, but why?

Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

1. Build \boldsymbol{M} to satisfy the entrywise constraints, and...
2. observe that the spectral constraint "magically" holds.

This gets the job done, but why?

Question: What is the underlying phenomenon or identity letting us satisfy both sets of constraints at once?

Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

1. Build \boldsymbol{M} to satisfy the entrywise constraints, and...
2. observe that the spectral constraint "magically" holds.

This gets the job done, but why?

Question: What is the underlying phenomenon or identity letting us satisfy both sets of constraints at once?

This work: A rederivation of the pseudomoments that swaps the constraints' statuses, building in psdness and making entrywise patterns appear "magically."

III. Gramian Construction

High-Level Strategy: Surrogate Random Tensors

High-Level Strategy: Surrogate Random Tensors

To build in psdness, we will build M as a Gram matrix:

$$
M_{S, T}=\tilde{\mathbb{E}}\left[\boldsymbol{x}^{S} \boldsymbol{x}^{T}\right]:=\left\langle\boldsymbol{v}_{S}, \boldsymbol{v}_{T}\right\rangle
$$

High-Level Strategy: Surrogate Random Tensors

To build in psdness, we will build \boldsymbol{M} as a Gram matrix:

$$
M_{S, T}=\tilde{\mathbb{E}}\left[\boldsymbol{x}^{S} \boldsymbol{x}^{T}\right]:=\left\langle\boldsymbol{v}_{S}, \boldsymbol{v}_{T}\right\rangle
$$

Probabilistic interpretation: for $0 \leq d \leq D / 2$, there are jointly Gaussian random symmetric tensors $\boldsymbol{G}^{(d)}$ such that

$$
M_{S, T}:=\mathbb{E}\left[G_{S}^{(|S|)} G_{T}^{(|T|)}\right]
$$

High-Level Strategy: Surrogate Random Tensors

To build in psdness, we will build \boldsymbol{M} as a Gram matrix:

$$
M_{S, T}=\tilde{\mathbb{E}}\left[\boldsymbol{x}^{S} \boldsymbol{x}^{T}\right]:=\left\langle\boldsymbol{v}_{S}, \boldsymbol{v}_{T}\right\rangle
$$

Probabilistic interpretation: for $0 \leq d \leq D / 2$, there are jointly Gaussian random symmetric tensors $\boldsymbol{G}^{(d)}$ such that

$$
M_{S, T}:=\mathbb{E}\left[G_{S}^{(|S|)} G_{T}^{(|T|)}\right]
$$

Intuition: for a "random $\boldsymbol{x} \in\{ \pm 1\}^{n}$ with $\sum_{i=1}^{n} x_{i}=0$,"

$$
\boldsymbol{G}^{(d)}=\boldsymbol{x}^{\otimes d}
$$

There is no such random \boldsymbol{x}, but we can build \boldsymbol{G} to "fake it" as much as possible.

Surrogate Tensor Desiderata

Surrogate Tensor Desiderata

Reasonable demands on $\boldsymbol{G}^{(d)}$ to look like $\boldsymbol{x}^{\otimes d}$:

- $G_{\varnothing}^{(0)}=1$
($\boldsymbol{x}^{\varnothing}=1$ normalization)

Surrogate Tensor Desiderata

Reasonable demands on $\boldsymbol{G}^{(d)}$ to look like $\boldsymbol{x}^{\otimes d}$:

- $G_{\varnothing}^{(0)}=1$
- $G_{\{i, i\}+S}^{(d)}=G_{S}^{(d-2)}$

$$
\begin{array}{r}
\left(\boldsymbol{x}^{\varnothing}=1 \text { normalization }\right) \\
\qquad\left(x_{i}^{2} \boldsymbol{x}^{S}=\boldsymbol{x}^{S}\right)
\end{array}
$$

Surrogate Tensor Desiderata

Reasonable demands on $\boldsymbol{G}^{(d)}$ to look like $\boldsymbol{x}^{\otimes d}$:

- $G_{\varnothing}^{(0)}=1$
- $G_{\{i, i\}+S}^{(d)}=G_{S}^{(d-2)}$
- $\sum_{i=1}^{n} G_{\{i\}+S}^{(d)}=0$

$$
\begin{array}{r}
\left(\boldsymbol{x}^{\varnothing}=1 \text { normalization }\right) \\
\left(x_{i}^{2} \boldsymbol{x}^{S}=\boldsymbol{x}^{S}\right) \\
\left(\boldsymbol{x}^{S} \sum_{i=1}^{n} x_{i}=0\right)
\end{array}
$$

Surrogate Tensor Desiderata

Reasonable demands on $\boldsymbol{G}^{(d)}$ to look like $\boldsymbol{x}^{\otimes d}$:

- $G_{\varnothing}^{(0)}=1$
- $G_{\{i, i\}+S}^{(d)}=G_{S}^{(d-2)}$
- $\sum_{i=1}^{n} G_{\{i\}+S}^{(d)}=0$

$$
\begin{array}{r}
\left(\boldsymbol{x}^{\varnothing}=1 \text { normalization }\right) \\
\left(x_{i}^{2} \boldsymbol{x}^{S}=\boldsymbol{x}^{S}\right) \\
\left(\boldsymbol{x}^{S} \sum_{i=1}^{n} x_{i}=0\right)
\end{array}
$$

$G^{(d)}$ as random as possible + these $\leadsto \leadsto$ condition canonical (orthogonally invariant) Gaussian symmetric tensor.

Surrogate Tensor Desiderata

Reasonable demands on $\boldsymbol{G}^{(d)}$ to look like $\boldsymbol{x}^{\otimes d}$:

- $G_{\varnothing}^{(0)}=1$
- $G_{\{i, i\}+S}^{(d)}=G_{S}^{(d-2)}$
- $\sum_{i=1}^{n} G_{\{i\}+S}^{(d)}=0$

$$
\begin{array}{r}
\left(\boldsymbol{x}^{\varnothing}=1 \text { normalization }\right) \\
\left(x_{i}^{2} \boldsymbol{x}^{S}=\boldsymbol{x}^{S}\right) \\
\left(\boldsymbol{x}^{S} \sum_{i=1}^{n} x_{i}=0\right)
\end{array}
$$

$G^{(d)}$ as random as possible + these $\leadsto \leadsto$ condition canonical (orthogonally invariant) Gaussian symmetric tensor.

Theorem: [K., Moore '22] For a particular choice of scaling of initial canonical Gaussian tensors, this sequence of $\boldsymbol{G}^{(d)}$
exactly recovers the Grigoriev-Laurent pseudomoments:

$$
\tilde{\mathbb{E}}\left[\boldsymbol{x}^{S} \boldsymbol{x}^{T}\right]=a_{|S \Delta T|}=\mathbb{E}\left[G_{S}^{(|S|)} G_{T}^{(|T|)}\right] .
$$

Reaping the Benefits

Reaping the Benefits

1. A straightforward proof that $\mathbf{M} \succeq \mathbf{0}$, with combinatorial identities "explaining" compatibility of spectral and entrywise constraints.

Reaping the Benefits

1. A straightforward proof that $\boldsymbol{M} \succeq \mathbf{0}$, with combinatorial identities "explaining" compatibility of spectral and entrywise constraints.
2. An explicit calculation of the eigenvalues, multiplicities, and eigenspaces of \boldsymbol{M} by tracking the Gaussian conditioning calculation, which gives...

Reaping the Benefits

1. A straightforward proof that $\boldsymbol{M} \succeq \mathbf{0}$, with combinatorial identities "explaining" compatibility of spectral and entrywise constraints.
2. An explicit calculation of the eigenvalues, multiplicities, and eigenspaces of \boldsymbol{M} by tracking the Gaussian conditioning calculation, which gives...
3. A proof of Laurent's empirical observations. In particular, the formerly mysterious recursive pattern in the eigenvalues may be seen to come from the conditional construction of $\boldsymbol{G}^{(d)}$ depending on the previous $\boldsymbol{G}^{\left(d^{\prime}\right)}$ over $d^{\prime}<d$.

Connection with Apolar Inner Product

Connection with Apolar Inner Product

Gaussian conditioning: $\boldsymbol{g} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ conditional on $\left\langle\boldsymbol{a}_{i}, \boldsymbol{g}\right\rangle=b_{i}$ for $i \in[m]$ is:

- Constant on $\operatorname{span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$, plus...
- lower-dimensional $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ on $\operatorname{span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)^{\perp}$.

Connection with Apolar Inner Product

Gaussian conditioning: $\boldsymbol{g} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ conditional on $\left\langle\boldsymbol{a}_{i}, \boldsymbol{g}\right\rangle=b_{i}$ for $i \in[m]$ is:

- Constant on $\operatorname{span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)$, plus...
- lower-dimensional $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ on $\operatorname{span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)^{\perp}$.

Interpret projection with homogeneous polynomials:

$$
\begin{aligned}
\boldsymbol{G} & \leftrightarrow g(\boldsymbol{y}):=\left\langle\boldsymbol{G}, \boldsymbol{y}^{\otimes d}\right\rangle \\
\langle\boldsymbol{G}, \boldsymbol{H}\rangle & =\langle\boldsymbol{g}, h\rangle
\end{aligned}
$$

under the apolar inner product of polynomials,

$$
\langle g, h\rangle:=\frac{1}{d!} g(\boldsymbol{\partial}) h(\boldsymbol{y}) \in \mathbb{R}
$$

Ideal-Multiharmonic Orthogonality

Ideal-Multiharmonic Orthogonality

Our conditioning in homogeneous polynomial space:

$$
\begin{aligned}
G_{\{i, i\}+S}^{(d)} & \leftrightarrow \text { multiples of } y_{i}^{2} \\
\sum_{i=1}^{n} G_{\{i\}+S}^{(d)} & \leftrightarrow \text { multiples of } \sum_{i=1}^{n} y_{i}
\end{aligned}
$$

$\leadsto s$ we condition on directions of a (homogeneous) ideal.

Ideal-Multiharmonic Orthogonality

Our conditioning in homogeneous polynomial space:

$$
\begin{aligned}
G_{\{i, i\}+S}^{(d)} & \leftrightarrow \text { multiples of } y_{i}^{2} \\
\sum_{i=1}^{n} G_{\{i\}+S}^{(d)} & \leftrightarrow
\end{aligned}
$$

$\leadsto \sim$ we condition on directions of a (homogeneous) ideal.
Beautiful adjointness of apolar inner product:

$$
\langle f g, h\rangle \propto\langle f, g(\boldsymbol{\partial}) h\rangle
$$

Ideal-Multiharmonic Orthogonality

Our conditioning in homogeneous polynomial space:

$$
\begin{aligned}
G_{\{i, i\}+S}^{(d)} &
\end{aligned} \text { multiples of } y_{i}^{2}
$$

$\leadsto \sim$ we condition on directions of a (homogeneous) ideal.
Beautiful adjointness of apolar inner product:

$$
\langle f g, h\rangle \propto\langle f, g(\partial) h\rangle .
$$

ns apolar orthogonal complement of ideal I generated by $p_{1}(\boldsymbol{y}), \ldots, p_{m}(\boldsymbol{y})$ is the multiharmonic polynomials,

$$
\mathcal{I}^{\perp}=\left\{f: p_{i}(\boldsymbol{\partial}) f=0 \text { for } i=1, \ldots, m\right\} .
$$

The Simplex-Harmonic Representation

The Simplex-Harmonic Representation

Actually, treat our two families of conditions separately, and end up projecting to simplex-harmonic polynomials:

$$
\mathcal{H}_{n, d}=\left\{f \in \mathbb{R}\left[z_{1}, \ldots, z_{n-1}\right]_{d}^{\text {hom }}:\left\langle s_{i}, \partial\right\rangle^{2} f=0 \text { for } i \in[n]\right\},
$$

for $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n} \in \mathbb{R}^{n-1}$ vertices of an equilateral simplex.

The Simplex-Harmonic Representation

Actually, treat our two families of conditions separately, and end up projecting to simplex-harmonic polynomials:
$\mathcal{H}_{n, d}=\left\{f \in \mathbb{R}\left[z_{1}, \ldots, z_{n-1}\right]_{d}^{\text {hom }}:\left\langle\boldsymbol{s}_{i}, \partial\right\rangle^{2} f=0\right.$ for $\left.i \in[n]\right\}$,
for $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n} \in \mathbb{R}^{n-1}$ vertices of an equilateral simplex.
S_{n} acts on \mathbb{R}^{n-1} by permuting the \boldsymbol{s}_{i} ("standard" irrep)...
m acts on $\mathcal{H}_{n, d}$ by permuting the $\left\langle\boldsymbol{s}_{i}, \boldsymbol{z}\right\rangle$.

The Simplex-Harmonic Representation

Actually, treat our two families of conditions separately, and end up projecting to simplex-harmonic polynomials:
$\mathcal{H}_{n, d}=\left\{f \in \mathbb{R}\left[z_{1}, \ldots, z_{n-1}\right]_{d}^{\text {hom }}:\left\langle\boldsymbol{s}_{i}, \partial\right\rangle^{2} f=0\right.$ for $\left.i \in[n]\right\}$,
for $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n} \in \mathbb{R}^{n-1}$ vertices of an equilateral simplex.
S_{n} acts on \mathbb{R}^{n-1} by permuting the \boldsymbol{s}_{i} ("standard" irrep)...
$n \rightarrow$ acts on $\mathcal{H}_{n, d}$ by permuting the $\left\langle\boldsymbol{s}_{i}, \boldsymbol{z}\right\rangle$.
Lemma: $\mathcal{H}_{n, d}$ is irreducible and isomorphic to the irrep of the $(n-d, d)$ partition. (New?)
\leadsto project to $\mathcal{H}_{n, d}$ with standard character computations.

Towards More Generic Settings

My original interest: SOS for random problems.

Towards More Generic Settings

My original interest: SOS for random problems.
$\leadsto s$ same questions for random W

Towards More Generic Settings

My original interest: SOS for random problems.
~ same questions for random W
m multiharmonic polynomials from a random ideal

Towards More Generic Settings

My original interest: SOS for random problems.
m same questions for random W
m multiharmonic polynomials from a random ideal
m heuristic guess/estimate for multiharmonic projection

Towards More Generic Settings

My original interest: SOS for random problems.
m same questions for random W
m multiharmonic polynomials from a random ideal
m heuristic guess/estimate for multiharmonic projection
m only approximate Gramian factorization

Towards More Generic Settings

My original interest: SOS for random problems.
m same questions for random W
m multiharmonic polynomials from a random ideal
m heuristic guess/estimate for multiharmonic projection
m only approximate Gramian factorization
m not yet much easier than "magical psdness" methods

Towards More Generic Settings

My original interest: SOS for random problems.
$\leadsto s$ same questions for random W
$n \rightarrow$ multiharmonic polynomials from a random ideal
\leadsto heuristic guess/estimate for multiharmonic projection
$\leadsto s$ only approximate Gramian factorization
m not yet much easier than "magical psdness" methods

Could simplify technical proofs of important evidence for difficulty of average-case optimization.

Thank you!

