Gramian constructions of SOS lower bounds and the spectra of pseudomoments

Dmitriy (Tim) Kunisky

Yale University

SIAM Applied Algebraic Geometry July 14, 2023

I. Introduction

Certifying Bounds on Quadratic Forms

Certifying Bounds on Quadratic Forms

Goal: Build efficient algorithms taking in $W \in \mathbb{R}_{sym}^{n \times n}$ and outputting upper bounds on

 $opt(W) := \max_{\boldsymbol{x} \in \{\pm 1\}^n} \boldsymbol{x}^\top W \boldsymbol{x}.$

Certifying Bounds on Quadratic Forms

Goal: Build efficient algorithms taking in $W \in \mathbb{R}_{sym}^{n \times n}$ and outputting upper bounds on

 $opt(W) := \max_{\boldsymbol{x} \in \{\pm 1\}^n} \boldsymbol{x}^\top W \boldsymbol{x}.$

Applications and motivations:

- Maximum cut in graphs
- Community detection in graphs
- Statistical physics: ground states of Ising models (Sherrington-Kirkpatrick model especially prominent)
- Statistics toy problems:
 - Spiked matrix models
 - "Planted" vector in a random subspace

Sum-of-Squares: Algebraic Proof Formulation

Familiar to this audience: in time $n^{O(D)}$, can efficiently solve the (even) degree *D* SOS relaxation:

minimize csubject to $c - \mathbf{x}^\top W \mathbf{x} = \sum_{i=1}^n p_i(x) (x_i^2 - 1) + \sum_j s_j(x)^2$, $\deg(p_i) \le D - 2$, $\deg(s_j) \le D/2$.

Sum-of-Squares: Algebraic Proof Formulation

Familiar to this audience: in time $n^{O(D)}$, can efficiently solve the (even) degree *D* SOS relaxation:

minimize csubject to $c - \mathbf{x}^\top W \mathbf{x} = \sum_{i=1}^n p_i(x) (x_i^2 - 1) + \sum_j s_j(x)^2$, $\deg(p_i) \le D - 2$, $\deg(s_j) \le D/2$.

Can be written as a semidefinite program by relating polynomials q(x) to representing matrices Q with

$$q(\boldsymbol{x}) = \boldsymbol{m}(\boldsymbol{x})^\top \boldsymbol{Q} \, \boldsymbol{m}(\boldsymbol{x}),$$

for $\boldsymbol{m}(\boldsymbol{x})$ the vector of low-degree monomials in x_1, \ldots, x_n .

Sum-of-Squares: Pseudomoment Formulation

Maybe slightly less familiar: a formulation of the convex dual popular in theoretical computer science,

> maximize $\widetilde{\mathbb{E}}[x^{\top}Wx]$ subject to $\widetilde{\mathbb{E}}: \mathbb{R}[x_1, \dots, x_n]_{\leq D} \to \mathbb{R}$ $\widetilde{\mathbb{E}}$ linear, $\widetilde{\mathbb{E}}[1] = 1$, $\widetilde{\mathbb{E}}[(x_i^2 - 1)p(x)] = 0$ for all $i \in [n]$, $\widetilde{\mathbb{E}}[s(x)^2] \geq 0$.

Sum-of-Squares: Pseudomoment Formulation

Maybe slightly less familiar: a formulation of the convex dual popular in theoretical computer science,

> maximize $\widetilde{\mathbb{E}}[\mathbf{x}^{\top}W\mathbf{x}]$ subject to $\widetilde{\mathbb{E}}: \mathbb{R}[x_1, \dots, x_n]_{\leq D} \to \mathbb{R}$ $\widetilde{\mathbb{E}}$ linear, $\widetilde{\mathbb{E}}[1] = 1$, $\widetilde{\mathbb{E}}[(x_i^2 - 1)p(x)] = 0$ for all $i \in [n]$, $\widetilde{\mathbb{E}}[s(x)^2] \geq 0$.

By linearity, enough to give **pseudomoments** $\widetilde{\mathbb{E}}[x_{i_1} \cdots x_{i_d}]$, and **positivity** \Leftrightarrow pseudomoment matrix $M \succeq 0$, where

$$M_{(i_1,\ldots,i_{d_1}),(j_1,\ldots,j_{d_2})} := \widetilde{\mathbb{E}}[x_{i_1}\cdots x_{i_{d_1}}x_{j_1}\cdots x_{j_{d_2}}].$$

Sum-of-Squares Lower Bounds

General questions: How large do we need to take *D* for SOS to work well? What properties of *W* control this?

Sum-of-Squares Lower Bounds

General questions: How large do we need to take *D* for SOS to work well? What properties of *W* control this?

Negative results = **lower bounds** on the degree, saying that we need to take D large to achieve some quality of certified bound on opt(W).

Sum-of-Squares Lower Bounds

General questions: How large do we need to take *D* for SOS to work well? What properties of *W* control this?

Negative results = **lower bounds** on the degree, saying that we need to take D large to achieve some quality of certified bound on opt(W).

Proof strategy: Construct a $\widetilde{\mathbb{E}}$, or equivalently a pseudomoment matrix M, that is feasible for high-degree SOS but gives a poor bound:

$$\widetilde{\mathbb{E}}[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}] \gg \operatorname{opt}(\boldsymbol{W}) = \max_{\boldsymbol{x} \in \{\pm 1\}^n} \boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}.$$

Boils down to understanding the **spectra** of large **patterned** matrix functions of various W—can be very technical!

II. A Mystery in SOS Lower Bounds

Grigoriev-Laurent Lower Bound

Grigoriev-Laurent Lower Bound

Let *n* be odd. Pin down the degree needed for **exactness**:

Theorem: [Grigoriev '01, Laurent '03] For some *W*,

 $\max_{\widetilde{\mathbb{E}} \text{ of degree } n-1} \widetilde{\mathbb{E}}[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}] > \operatorname{opt}(\boldsymbol{W}).$

Theorem: [Fawzi, Saunderson, Parrilo '16] For all *W*,

 $\max_{\widetilde{\mathbb{E}} \text{ of degree } n+1} \widetilde{\mathbb{E}}[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}] = \operatorname{opt}(\boldsymbol{W}).$

Grigoriev-Laurent Lower Bound

Let *n* be odd. Pin down the degree needed for **exactness**:

Theorem: [Grigoriev '01, Laurent '03] For some *W*,

$$\max_{\widetilde{\mathbb{E}} \text{ of degree } n-1} \widetilde{\mathbb{E}}[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}] > \operatorname{opt}(\boldsymbol{W}).$$

Theorem: [Fawzi, Saunderson, Parrilo '16] For all *W*,

$$\max_{\widetilde{\mathbb{E}} \text{ of degree } n+1} \widetilde{\mathbb{E}}[\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}] = \operatorname{opt}(\boldsymbol{W}).$$

Bad *W* is $W := I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} = \text{projection to span}(\mathbf{1})^{\perp}$. By parity,

$$\boldsymbol{x}^{\mathsf{T}} \boldsymbol{W} \boldsymbol{x} = n - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \leq n - \frac{1}{n},$$

but can find $\widetilde{\mathbb{E}}$ such that

$$\widetilde{\mathbb{E}}\left[\boldsymbol{x}^{\top}\boldsymbol{W}\boldsymbol{x}\right] = \boldsymbol{n}.$$

Equivalently, we want $\widetilde{\mathbb{E}}[(\sum_{i=1}^{n} x_i)^2] = 0.$

Equivalently, we want $\widetilde{\mathbb{E}}[(\sum_{i=1}^{n} x_i)^2] = 0.$

Symmetrization $\widetilde{\mathbb{E}}[p(\mathbf{x})] \leftarrow \frac{1}{2}(\widetilde{\mathbb{E}}[p(\mathbf{x})] + \widetilde{\mathbb{E}}[p(-\mathbf{x})])$ lets us assume without loss of generality $\widetilde{\mathbb{E}}[x_1 \cdots x_{2k+1}] = 0$.

Equivalently, we want $\widetilde{\mathbb{E}}[(\sum_{i=1}^{n} x_i)^2] = 0.$

Symmetrization $\widetilde{\mathbb{E}}[p(\mathbf{x})] \leftarrow \frac{1}{2}(\widetilde{\mathbb{E}}[p(\mathbf{x})] + \widetilde{\mathbb{E}}[p(-\mathbf{x})])$ lets us assume without loss of generality $\widetilde{\mathbb{E}}[x_1 \cdots x_{2k+1}] = 0$.

For even pseudomoments, guess:

$$0 = \widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]$$

= $\sum_{i=1}^{n} \widetilde{\mathbb{E}}[x_{i}^{2}] + 2 \sum_{1 \le i < j \le n} \widetilde{\mathbb{E}}[x_{i}x_{j}]$
= $n + n(n-1)a_{2}$. (constraint + symmetry)

Equivalently, we want $\widetilde{\mathbb{E}}[(\sum_{i=1}^{n} x_i)^2] = 0.$

Symmetrization $\widetilde{\mathbb{E}}[p(\mathbf{x})] \leftarrow \frac{1}{2}(\widetilde{\mathbb{E}}[p(\mathbf{x})] + \widetilde{\mathbb{E}}[p(-\mathbf{x})])$ lets us assume without loss of generality $\widetilde{\mathbb{E}}[x_1 \cdots x_{2k+1}] = 0$.

For even pseudomoments, guess:

$$0 = \widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]$$

= $\sum_{i=1}^{n} \widetilde{\mathbb{E}}[x_{i}^{2}] + 2 \sum_{1 \le i < j \le n} \widetilde{\mathbb{E}}[x_{i}x_{j}]$
= $n + n(n-1)a_{2}$. (constraint + symmetry)

Solving leads to predict, for all $i \neq j$,

$$\widetilde{\mathbb{E}}[x_i x_j] := a_2 = -\frac{1}{n-1}.$$

Choosing $\widetilde{\mathbb{E}}$: Finishing the Job

Symmetrize over $(x_1, \ldots, x_n) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \rightsquigarrow$

$$\widetilde{\mathbb{E}}[x_{i_1}\cdots x_{i_{2k}}]:=a_{2k},$$

and expect these to satisfy

$$0 = \widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_i\right)^{2k}\right]$$

= constant + linear combination of $a_2, \ldots, a_{2k-2}, a_{2k}$.

Choosing $\widetilde{\mathbb{E}}$: Finishing the Job

Symmetrize over $(x_1, \ldots, x_n) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \rightsquigarrow$

$$\widetilde{\mathsf{E}}[x_{i_1}\cdots x_{i_{2k}}] := a_{2k},$$

and expect these to satisfy

$$0 = \widetilde{\mathbb{E}}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2k}\right]$$

= constant + linear combination of $a_{2}, \dots, a_{2k-2}, a_{2k}$.

Solving simple combinatorial recursion gives the **Grigoriev-Laurent pseudomoments**,

$$\widetilde{\mathbb{E}}[x_{i_1}\cdots x_{i_d}] = a_d = \mathbb{1}\{d \text{ even}\} \cdot (-1)^{d/2} \prod_{i=0}^{d/2-1} \frac{2i+1}{n-2i-1}.$$

Must check positivity of $\widetilde{\mathbb{E}} \Leftrightarrow \mathbf{0} \leq \mathbf{M} \in \mathbb{R}^{\binom{[n]}{\leq D/2} \times \binom{[n]}{\leq D/2}}$ with

 $M_{S,T} := a_{|S \triangle T|}.$

(Symmetric difference appears from $x_i^2 = 1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Must check positivity of $\widetilde{\mathbb{E}} \Leftrightarrow \mathbf{0} \leq \mathbf{M} \in \mathbb{R}^{\binom{[n]}{\leq D/2} \times \binom{[n]}{\leq D/2}}$ with

 $M_{S,T} := a_{|S \triangle T|}.$

(Symmetric difference appears from $x_i^2 = 1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).

Must check positivity of $\widetilde{\mathbb{E}} \Leftrightarrow \mathbf{0} \leq \mathbf{M} \in \mathbb{R}^{\binom{[n]}{\leq D/2} \times \binom{[n]}{\leq D/2}}$ with

 $M_{S,T} := a_{|S \triangle T|}.$

(Symmetric difference appears from $x_i^2 = 1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).

Laurent's proof: Use interlacing; find a large kernel and a submatrix whose pdness may be checked by association scheme theory and hypergeometric series combinatorics.

Must check positivity of $\widetilde{\mathbb{E}} \Leftrightarrow \mathbf{0} \preceq \mathbf{M} \in \mathbb{R}^{\binom{[n]}{\leq D/2} \times \binom{[n]}{\leq D/2}}$ with

 $M_{S,T} := a_{|S \triangle T|}.$

(Symmetric difference appears from $x_i^2 = 1$ constraint, so that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).

Laurent's proof: Use interlacing; find a large kernel and a submatrix whose pdness may be checked by association scheme theory and hypergeometric series combinatorics.

Observation: The eigenvalues of *M* have interesting structure and high multiplicity. More direct proof possible?

Mystery: Eigenvalues of Pseudomoments

Read across the diagonals to see Laurent's recursion:

1	3	5	7	9	11
	0	0	0	0	0
1	1	$\frac{13}{8}$	$\frac{19}{12}$	$\frac{263}{128}$	$\frac{1289}{640}$
	$\frac{3}{2} \cdot 1$	$\frac{5}{4} \cdot 1$	$\frac{7}{6} \cdot \frac{13}{8}$	$\frac{9}{8} \cdot \frac{19}{12}$	$\frac{11}{10} \cdot \frac{263}{128}$
		$\frac{5\cdot 3}{4\cdot 2}\cdot 1$	$\frac{7\cdot 5}{6\cdot 4}$ · 1	$\frac{9\cdot7}{8\cdot6}\cdot\frac{13}{8}$	$\frac{11\cdot 9}{10\cdot 8} \cdot \frac{19}{12}$
			$\frac{7\cdot5\cdot3}{6\cdot4\cdot2}\cdot 1$	$\frac{9\cdot7\cdot5}{8\cdot6\cdot4}$ · 1	$\frac{11\cdot9\cdot7}{10\cdot8\cdot6}\cdot \frac{13}{8}$
				$\frac{9\cdot7\cdot5\cdot3}{8\cdot6\cdot4\cdot2}$ · 1	$\frac{11\cdot9\cdot7\cdot5}{10\cdot8\cdot6\cdot4}$ · 1
					$\frac{11\cdot9\cdot7\cdot5\cdot3}{10\cdot8\cdot6\cdot4\cdot2}\cdot 1$

 $n = \cdots$

Not hard to predict multiplicities also.

Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

- 1. Build *M* to satisfy the entrywise constraints, and...
- 2. observe that the spectral constraint "magically" holds.

This gets the job done, but why?

Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

- 1. Build *M* to satisfy the entrywise constraints, and...
- 2. observe that the spectral constraint "magically" holds.

This gets the job done, but why?

Question: What is the underlying phenomenon or identity letting us satisfy **both** sets of constraints at once?

Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

1. Build *M* to satisfy the entrywise constraints, and...

2. observe that the spectral constraint "magically" holds.

This gets the job done, but why?

Question: What is the underlying phenomenon or identity letting us satisfy **both** sets of constraints at once?

This work: A rederivation of the pseudomoments that swaps the constraints' statuses, building in psdness and making entrywise patterns appear "magically."

III. Gramian Construction

To build in psdness, we will build *M* as a Gram matrix:

$$M_{S,T} = \widetilde{\mathbb{E}}[\boldsymbol{x}^{S}\boldsymbol{x}^{T}] := \langle \boldsymbol{v}_{S}, \boldsymbol{v}_{T} \rangle.$$

To build in psdness, we will build *M* as a Gram matrix:

$$M_{S,T} = \widetilde{\mathbb{E}}[\boldsymbol{x}^{S}\boldsymbol{x}^{T}] := \langle \boldsymbol{v}_{S}, \boldsymbol{v}_{T} \rangle.$$

Probabilistic interpretation: for $0 \le d \le D/2$, there are jointly Gaussian random symmetric tensors $\boldsymbol{G}^{(d)}$ such that

 $M_{S,T} := \mathbb{E}[G_S^{(|S|)}G_T^{(|T|)}]$

To build in psdness, we will build *M* as a Gram matrix:

$$M_{S,T} = \widetilde{\mathbb{E}}[\boldsymbol{x}^{S}\boldsymbol{x}^{T}] := \langle \boldsymbol{v}_{S}, \boldsymbol{v}_{T} \rangle.$$

Probabilistic interpretation: for $0 \le d \le D/2$, there are jointly Gaussian random symmetric tensors $G^{(d)}$ such that

$$M_{S,T} := \mathbb{E}[G_S^{(|S|)}G_T^{(|T|)}]$$

Intuition: for a "random $\boldsymbol{x} \in \{\pm 1\}^n$ with $\sum_{i=1}^n x_i = 0$,"

$$\boldsymbol{G}^{(d)} = \boldsymbol{x}^{\otimes d}.$$

There is no such random x, but we can build G to "fake it" as much as possible.

Reasonable demands on $G^{(d)}$ to look like $\mathbf{x}^{\otimes d}$:

• $G_{\emptyset}^{(0)} = 1$ ($\boldsymbol{x}^{\emptyset} = 1$ normalization)

Reasonable demands on $G^{(d)}$ to look like $\mathbf{x}^{\otimes d}$:

• $G_{\emptyset}^{(0)} = 1$ ($\mathbf{x}^{\emptyset} = 1$ normalization) • $G_{\{i,i\}+S}^{(d)} = G_S^{(d-2)}$ ($\mathbf{x}_i^2 \mathbf{x}^S = \mathbf{x}^S$)

Reasonable demands on $G^{(d)}$ to look like $\mathbf{x}^{\otimes d}$:

- $G_{\emptyset}^{(0)} = 1$ ($\mathbf{x}^{\emptyset} = 1$ normalization) • $G_{\{i,i\}+S}^{(d)} = G_{S}^{(d-2)}$ ($x_{i}^{2}\mathbf{x}^{S} = \mathbf{x}^{S}$)
- $\sum_{i=1}^{n} G_{\{i\}+S}^{(d)} = 0$ $(\mathbf{x}^{S} \sum_{i=1}^{n} x_{i} = 0)$

Reasonable demands on $G^{(d)}$ to look like $x^{\otimes d}$:

- $G_{\varnothing}^{(0)} = 1$ ($\mathbf{x}^{\varnothing} = 1$ normalization) • $G_{I_i I_i I_i + S}^{(d)} = G_S^{(d-2)}$ ($x_i^2 \mathbf{x}^S = \mathbf{x}^S$)
- $\sum_{i=1}^{n} G_{\{i\}+S}^{(d)} = 0$ $(\mathbf{x}^{S} \sum_{i=1}^{n} x_{i} = 0)$

 $G^{(d)}$ as random as possible + these \rightsquigarrow condition canonical (orthogonally invariant) Gaussian symmetric tensor.

Reasonable demands on $G^{(d)}$ to look like $x^{\otimes d}$:

- $G_{\emptyset}^{(0)} = 1$ ($\mathbf{x}^{\emptyset} = 1$ normalization) • $G_{\{i,i\}+S}^{(d)} = G_S^{(d-2)}$ ($\mathbf{x}_i^2 \mathbf{x}^S = \mathbf{x}^S$)
- $\sum_{i=1}^{n} G_{\{i\}+S}^{(d)} = 0$ $(\mathbf{x}^{S} \sum_{i=1}^{n} x_{i} = 0)$

 $G^{(d)}$ as random as possible + these \rightsquigarrow condition canonical (orthogonally invariant) Gaussian symmetric tensor.

Theorem: [K., Moore '22] For a particular choice of scaling of initial canonical Gaussian tensors, this sequence of $G^{(d)}$ exactly recovers the Grigoriev-Laurent pseudomoments:

$$\widetilde{\mathbb{E}}[\boldsymbol{x}^{S}\boldsymbol{x}^{T}] = a_{|S \triangle T|} = \mathbb{E}[G_{S}^{(|S|)}G_{T}^{(|T|)}].$$

1. A straightforward proof that $M \succeq 0$, with combinatorial identities "explaining" compatibility of spectral and entrywise constraints.

- 1. A straightforward proof that $M \succeq 0$, with combinatorial identities "explaining" compatibility of spectral and entrywise constraints.
- 2. An explicit calculation of the eigenvalues, multiplicities, and eigenspaces of *M* by tracking the Gaussian conditioning calculation, which gives...

- 1. A straightforward proof that $M \succeq 0$, with combinatorial identities "explaining" compatibility of spectral and entrywise constraints.
- 2. An explicit calculation of the eigenvalues, multiplicities, and eigenspaces of *M* by tracking the Gaussian conditioning calculation, which gives...
- 3. A proof of Laurent's empirical observations. In particular, the formerly mysterious recursive pattern in the eigenvalues may be seen to come from the conditional construction of $G^{(d)}$ depending on the previous $G^{(d')}$ over d' < d.

Connection with Apolar Inner Product

Connection with Apolar Inner Product

Gaussian conditioning: $\boldsymbol{g} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ conditional on $\langle \boldsymbol{a}_i, \boldsymbol{g} \rangle = b_i$ for $i \in [m]$ is:

- Constant on span(a_1, \ldots, a_m), plus...
- lower-dimensional $\mathcal{N}(\mathbf{0}, \mathbf{I})$ on span $(\mathbf{a}_1, \ldots, \mathbf{a}_m)^{\perp}$.

Connection with Apolar Inner Product

Gaussian conditioning: $\boldsymbol{g} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ conditional on $\langle \boldsymbol{a}_i, \boldsymbol{g} \rangle = b_i$ for $i \in [m]$ is:

- Constant on span(a_1, \ldots, a_m), plus...
- lower-dimensional $\mathcal{N}(\mathbf{0}, \mathbf{I})$ on span $(\mathbf{a}_1, \ldots, \mathbf{a}_m)^{\perp}$.

Interpret projection with homogeneous polynomials:

$$G \leftrightarrow g(\boldsymbol{y}) := \langle G, \boldsymbol{y}^{\otimes d} \rangle$$
$$G, H \rangle = \langle g, h \rangle$$

under the apolar inner product of polynomials,

$$\langle g,h
angle \coloneqq rac{1}{d!}g(oldsymbol{\partial})h(oldsymbol{y})\in \mathbb{R}.$$

Our conditioning in homogeneous polynomial space:

$$\begin{array}{rcl} G^{(d)}_{\{i,i\}+S} & \leftrightarrow & \text{multiples of } \mathcal{Y}^2_i \\ \sum_{i=1}^n G^{(d)}_{\{i\}+S} & \leftrightarrow & \text{multiples of } \sum_{i=1}^n \mathcal{Y}_i \end{array}$$

---- we condition on directions of a (homogeneous) ideal.

Our conditioning in homogeneous polynomial space:

$$\begin{array}{rcl} G^{(d)}_{\{i,i\}+S} & \leftrightarrow & \text{multiples of } \mathcal{Y}^2_i \\ \sum_{i=1}^n G^{(d)}_{\{i\}+S} & \leftrightarrow & \text{multiples of } \sum_{i=1}^n \mathcal{Y}_i \end{array}$$

---- we condition on directions of a (homogeneous) ideal.

Beautiful adjointness of apolar inner product:

 $\langle fg,h\rangle \propto \langle f,g(\partial)h\rangle.$

Our conditioning in homogeneous polynomial space:

$$\begin{array}{rcl} G^{(d)}_{\{i,i\}+S} & \leftrightarrow & \text{multiples of } \mathcal{Y}^2_i \\ \sum_{i=1}^n G^{(d)}_{\{i\}+S} & \leftrightarrow & \text{multiples of } \sum_{i=1}^n \mathcal{Y}_i \end{array}$$

---- we condition on directions of a (homogeneous) ideal.

Beautiful adjointness of apolar inner product:

 $\langle fg,h\rangle \propto \langle f,g(\partial)h\rangle.$

→ apolar orthogonal complement of ideal *1* generated by $p_1(\boldsymbol{y}), \ldots, p_m(\boldsymbol{y})$ is the **multiharmonic polynomials**,

$$\mathcal{I}^{\perp} = \{f: p_i(\boldsymbol{\partial}) f = 0 \text{ for } i = 1, \dots, m\}.$$

Actually, treat our two families of conditions separately, and end up projecting to **simplex-harmonic** polynomials:

$$\mathcal{H}_{n,d} = \left\{ f \in \mathbb{R}[z_1, \dots, z_{n-1}]_d^{\mathsf{hom}} : \langle s_i, \partial \rangle^2 f = 0 \text{ for } i \in [n] \right\},\$$

for $s_1, \ldots, s_n \in \mathbb{R}^{n-1}$ vertices of an **equilateral simplex**.

Actually, treat our two families of conditions separately, and end up projecting to **simplex-harmonic** polynomials:

$$\mathcal{H}_{n,d} = \left\{ f \in \mathbb{R}[z_1, \dots, z_{n-1}]_d^{\mathsf{hom}} : \langle s_i, \partial \rangle^2 f = 0 \text{ for } i \in [n] \right\},\$$

for $s_1, \ldots, s_n \in \mathbb{R}^{n-1}$ vertices of an **equilateral simplex**.

 S_n acts on \mathbb{R}^{n-1} by permuting the s_i ("standard" irrep)...

 \rightsquigarrow acts on $\mathcal{H}_{n,d}$ by permuting the $\langle s_i, z \rangle$.

Actually, treat our two families of conditions separately, and end up projecting to **simplex-harmonic** polynomials:

$$\mathcal{H}_{n,d} = \left\{ f \in \mathbb{R}[z_1, \dots, z_{n-1}]_d^{\text{hom}} : \langle s_i, \partial \rangle^2 f = 0 \text{ for } i \in [n] \right\},\$$

for $s_1, \ldots, s_n \in \mathbb{R}^{n-1}$ vertices of an **equilateral simplex**.

 S_n acts on \mathbb{R}^{n-1} by permuting the s_i ("standard" irrep)...

 \rightsquigarrow acts on $\mathcal{H}_{n,d}$ by permuting the $\langle s_i, z \rangle$.

Lemma: $\mathcal{H}_{n,d}$ is irreducible and isomorphic to the irrep of the (n - d, d) partition. (New?)

 \rightsquigarrow project to $\mathcal{H}_{n,d}$ with standard character computations.

My original interest: SOS for random problems.

 \rightsquigarrow same questions for random W

- ---- same questions for random W

- ---- same questions for random W
- ---- multiharmonic polynomials from a random ideal
- ---- heuristic guess/estimate for multiharmonic projection

- \rightsquigarrow same questions for random W
- ---- multiharmonic polynomials from a random ideal
- ---- heuristic guess/estimate for multiharmonic projection
- ---- only approximate Gramian factorization

- \rightsquigarrow same questions for random W
- ---- multiharmonic polynomials from a random ideal
- ---- heuristic guess/estimate for multiharmonic projection
- --- not yet much easier than "magical psdness" methods

My original interest: SOS for random problems.

- \rightsquigarrow same questions for random W
- ---- multiharmonic polynomials from a random ideal
- ---- heuristic guess/estimate for multiharmonic projection
- ---- not yet much easier than "magical psdness" methods

Could simplify technical proofs of important evidence for **difficulty of average-case optimization**.

Thank you!