Spectral pseudorandomness and the clique number of the Paley graph

Tim Kunisky

Yale University

MIT Stochastics and Statistics Seminar
March 3, 2023

I. Introduction

Paley Graph

Paley Graph

$\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}=$ finite field on p elements for $p \equiv 1 \bmod 4$.
G_{p} a graph on vertices \mathbb{F}_{p} with $i \sim j$ jiff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i=x^{2}\right)$.

Paley Graph

$\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}=$ finite field on p elements for $p \equiv 1 \bmod 4$.
G_{p} a graph on vertices \mathbb{F}_{p} with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i=x^{2}\right)$.

Example: $p=5 \leadsto$ squares are $\{1,4 \equiv-1\}$.

Paley Graph

$\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}=$ finite field on p elements for $p \equiv 1 \bmod 4$.
G_{p} a graph on vertices \mathbb{F}_{p} with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i=x^{2}\right)$.

Heuristic: Addition and multiplication are independent.

Paley Graph

$\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}=$ finite field on p elements for $p \equiv 1 \bmod 4$.
G_{p} a graph on vertices \mathbb{F}_{p} with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i=x^{2}\right)$.

Heuristic: Addition and multiplication are independent.
\Longrightarrow adjacencies in G_{p} look independent.
$\Longrightarrow G_{p}$ is pseudorandom, behaving like Erdős-Rényi graph with edge probability $\frac{1}{2}$ (since $\operatorname{deg}(x)=\frac{p-1}{2} \sim \frac{1}{2} p$).

Paley Graph

$\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}=$ finite field on p elements for $p \equiv 1 \bmod 4$.
G_{p} a graph on vertices \mathbb{F}_{p} with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i=x^{2}\right)$.

Heuristic: Addition and multiplication are independent.
\Longrightarrow adjacencies in G_{p} look independent.
$\Longrightarrow G_{p}$ is pseudorandom, behaving like Erdős-Rényi graph with edge probability $\frac{1}{2}$ (since $\operatorname{deg}(x)=\frac{p-1}{2} \sim \frac{1}{2} p$).

Example: As $p \rightarrow \infty$,
\# triangles in $G_{p} \sim \mathbb{E}$ [\# triangles in $E R$]

$$
=\binom{p}{3}\left(\frac{1}{2}\right)^{3} \sim \frac{1}{48} p^{3} .
$$

Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?
Example: $\omega(G):=$ largest clique in G.

Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?
Example: $\omega(G):=$ largest clique in G. Easy calculations \Longrightarrow

$$
\mathbb{E}[\omega(\mathrm{ER})] \sim 2 \log _{2} p
$$

Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?
Example: $\omega(G):=$ largest clique in G. Easy calculations \Longrightarrow

$$
\mathbb{E}[\omega(\mathrm{ER})] \sim 2 \log _{2} p
$$

Same for $\omega\left(G_{p}\right)$? Not quite...

$$
\begin{aligned}
& \omega\left(G_{p_{i}}\right) \geq \log p_{i} \log \log \log p_{i} \\
& \omega\left(G_{p}\right) \stackrel{?}{\sim}(\log p)^{2}
\end{aligned}
$$

And, in any case, the best upper bounds we have are

$$
\begin{array}{lr}
\omega\left(G_{p}\right) \leq \sqrt{p} & \text { (spectral/Hoffman/trivial bound) } \\
\omega\left(G_{p}\right) \leq \sqrt{p / 2}+1 & \text { [Hanson, Petridis '21] }
\end{array}
$$

Big number theory question:

What proof technique can break the "square root barrier" and prove

$$
\omega\left(G_{p}\right)=O\left(p^{1 / 2-\varepsilon}\right) ?
$$

II. Sum-of-Squares Relaxations

(joint work with with Xifan Pu)

A degree 4 sum-of-squares lower bound for the clique number of the Paley graph [arXiv:2211.02713]

Sum-of-Squares (SOS) Relaxations

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{lll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d}\end{array}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{llll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots & \cdots\end{array} \boldsymbol{y}^{\otimes d}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
2. Find some tractable constraints on \boldsymbol{X} for feasible \boldsymbol{y} :

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{lll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d}\end{array}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
2. Find some tractable constraints on \boldsymbol{X} for feasible \boldsymbol{y} :

- $\boldsymbol{X} \succeq \mathbf{0}$

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{lll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d}\end{array}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
2. Find some tractable constraints on \boldsymbol{X} for feasible \boldsymbol{y} :

- $\boldsymbol{X} \succeq \mathbf{0}$
- $X_{\boldsymbol{i}, \boldsymbol{j}}=y_{i_{1}} \cdots y_{i_{k}} y_{j_{1}} \cdots y_{j_{\ell}}$

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{llll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots & \cdots\end{array} \boldsymbol{y}^{\otimes d}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
2. Find some tractable constraints on \boldsymbol{X} for feasible \boldsymbol{y} :

- $\boldsymbol{X} \succeq \mathbf{0}$
- $X_{i, j}=X(S)$ depends only on index set S in $\boldsymbol{i}, \boldsymbol{j}$

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{lll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d}\end{array}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
2. Find some tractable constraints on \boldsymbol{X} for feasible \boldsymbol{y} :

- $\boldsymbol{X} \succeq \mathbf{0}$
- $X_{i, j}=X(S)$ depends only on index set S in $\boldsymbol{i}, \boldsymbol{j}$
- $X(\varnothing)=1, X(S)=0$ for all S not a clique in G

Sum-of-Squares (SOS) Relaxations

For any graph $G=(V, E)$, have polynomial (Boolean) optimization formulation,

$$
\omega(G)=\max \left\{\sum_{i \in V} y_{i}: y_{i}^{2}-y_{i}=0, \quad y_{i} y_{j}=0 \text { if }\{i, j\} \notin E\right\}
$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d}=\left[\begin{array}{lll}1 & \boldsymbol{y} & \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d}\end{array}\right]$ and $\boldsymbol{X}=\boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
2. Find some tractable constraints on \boldsymbol{X} for feasible \boldsymbol{y} :

- $\boldsymbol{X} \succeq \mathbf{0}$
- $X_{i, j}=X(S)$ depends only on index set S in $\boldsymbol{i}, \boldsymbol{j}$
- $X(\varnothing)=1, X(S)=0$ for all S not a clique in G

3. Optimize $\sum_{i \in V} X(\{i\})$ over that enlarged set

Degree $2=: \operatorname{SOS}_{2}(G) \quad($ Case $d=1)$

Degree $2=: \operatorname{SOS}_{2}(G) \quad($ Case $d=1)$

maximize $\sum_{i=1}^{p} X(\{i\})$ subject to
$\boldsymbol{X}=\left[\begin{array}{c|cccc}1 & X(\{1\}) & X(\{2\}) & \cdots & X(\{p\}) \\ \hline X(\{1\}) & X(\{1\}) & X(\{1,2\}) & \cdots & X(\{1, p\}) \\ X(\{2\}) & X(\{1,2\}) & X(\{2\}) & \cdots & X(\{2, p\}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X(\{p\}) & X(\{1, p\}) & X(\{2, p\}) & \cdots & X(\{p\})\end{array}\right] \succeq \mathbf{0}$,
$X(\{i, j\})=0$ whenever $i \not \chi_{G} j$.

Degree $2=: \operatorname{SOS}_{2}(G) \quad($ Case $d=1)$

maximize $\sum_{i=1}^{p} X(\{i\})$ subject to
$\boldsymbol{X}=\left[\begin{array}{c|cccc}1 & X(\{1\}) & X(\{2\}) & \cdots & X(\{p\}) \\ \hline X(\{1\}) & X(\{1\}) & X(\{1,2\}) & \cdots & X(\{1, p\}) \\ X(\{2\}) & X(\{1,2\}) & X(\{2\}) & \cdots & X(\{2, p\}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X(\{p\}) & X(\{1, p\}) & X(\{2, p\}) & \cdots & X(\{p\})\end{array}\right] \succeq \mathbf{0}$,
$X(\{i, j\})=0$ whenever $i \not{ }_{G} j$.
This has been studied earlier as the Lovász function $\mathfrak{Y}(\bar{G})$.

Degree $2=: \operatorname{SOS}_{2}(G) \quad($ Case $d=1)$

maximize $\sum_{i=1}^{p} X(\{i\})$ subject to
$\boldsymbol{X}=\left[\begin{array}{c|cccc}1 & X(\{1\}) & X(\{2\}) & \cdots & X(\{p\}) \\ \hline X(\{1\}) & X(\{1\}) & X(\{1,2\}) & \cdots & X(\{1, p\}) \\ X(\{2\}) & X(\{1,2\}) & X(\{2\}) & \cdots & X(\{2, p\}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X(\{p\}) & X(\{1, p\}) & X(\{2, p\}) & \cdots & X(\{p\})\end{array}\right] \succeq \mathbf{0}$,
$X(\{i, j\})=0$ whenever $i \not \chi_{G} j$.
This has been studied earlier as the Lovász function $\mathcal{\vartheta}(\bar{G})$.
$d \geq 2 \leadsto \operatorname{SOS}_{2 d}(G) \geq \omega(G)$, tighter bounds in time $p^{O(d)}$.

SOS Lower Bounds for Random Graphs

To study average-case difficulty of $\omega(\cdot)$, people wanted to understand how hard it is to compute ω (ER).

SOS Lower Bounds for Random Graphs

To study average-case difficulty of $\omega(\cdot)$, people wanted to understand how hard it is to compute ω (ER).

Theorem: [MW '13]...[BHKKMP '19] For any fixed d, as $p \rightarrow \infty$,

$$
\mathbb{E}\left[\mathrm{SOS}_{2 d}(\mathrm{ER})\right]=\Omega\left(p^{1 / 2-o(1)}\right) \gg O(\log p)=\mathbb{E}[\omega(\mathrm{ER})] .
$$

SOS Lower Bounds for Random Graphs

To study average-case difficulty of $\omega(\cdot)$, people wanted to understand how hard it is to compute $\omega(\mathrm{ER})$.

Theorem: [MW '13]...[BHKKMP '19] For any fixed d, as $p \rightarrow \infty$,

$$
\mathbb{E}\left[\mathrm{SOS}_{2 d}(\mathrm{ER})\right]=\Omega\left(p^{1 / 2-o(1)}\right) \gg O(\log p)=\mathbb{E}[\omega(\mathrm{ER})] .
$$

Question: Does this transfer to Paley graphs, showing that low-degree SOS cannot break the \sqrt{p} barrier?

[Gvozdenović, Laurent, Vallentin '09; Kobzar, Mody '23 (forthcoming)]

Our Results

Main message: Degree 4 SOS might improve on the $\omega\left(G_{p}\right) \lesssim \sqrt{p}$ bound, but subject to limitations.

Our Results

Main message: Degree 4 SOS might improve on the $\omega\left(G_{p}\right) \lesssim \sqrt{p}$ bound, but subject to limitations.

Easy to show: $\operatorname{SOS}_{2}\left(G_{p}\right)=p^{1 / 2}$.

Our Results

Main message: Degree 4 SOS might improve on the $\omega\left(G_{p}\right) \leqslant \sqrt{p}$ bound, but subject to limitations.

Easy to show: $\operatorname{SOS}_{2}\left(G_{p}\right)=p^{1 / 2}$.

Main theorem: [KY'22] $\mathrm{SOS}_{4}\left(G_{p}\right)=\Omega\left(\boldsymbol{p}^{1 / 3}\right)$.

Our Results

Main message: Degree 4 SOS might improve on the $\omega\left(G_{p}\right) \lesssim \sqrt{p}$ bound, but subject to limitations.

Easy to show: $\mathrm{SOS}_{2}\left(G_{p}\right)=p^{1 / 2}$.

Main theorem: [KY '22] $\mathrm{SOS}_{4}\left(G_{p}\right)=\Omega\left(\boldsymbol{p}^{1 / 3}\right)$.

Remarks:

1. Derandomizes an early result on the random graph case: [DM '15] showed $\mathbb{E}\left[\mathrm{SOS}_{4}(\mathrm{ER})\right]=\widetilde{\Omega}\left(p^{1 / 3}\right)$.

Our Results

Main message: Degree 4 SOS might improve on the $\omega\left(G_{p}\right) \lesssim \sqrt{p}$ bound, but subject to limitations.

Easy to show: $\mathrm{SOS}_{2}\left(G_{p}\right)=p^{1 / 2}$.

Main theorem: $\left[\mathrm{KY}{ }^{\prime} 22\right] \mathrm{SOS}_{4}\left(G_{p}\right)=\Omega\left(\boldsymbol{p}^{1 / 3}\right)$.

Remarks:

1. Derandomizes an early result on the random graph case: [DM '15] showed $\mathbb{E}\left[\mathrm{SOS}_{4}(\mathrm{ER})\right]=\widetilde{\Omega}\left(p^{1 / 3}\right)$.
2. Compatible with numerics: maybe $\mathrm{SOS}_{4}\left(G_{p}\right) \sim p^{0.4}$.

Ancillary Results I: Lower Bound of $\Omega\left(p^{0.4}\right)$?

Ancillary Results I: Lower Bound of $\Omega\left(p^{0.4}\right)$?

We use a simple \boldsymbol{X}, first used by [FK '03], later by [MW '13], but ultimately found to be insufficient by [ВНККМР '19]:

$$
X(S):=f(|S|) \cdot \mathbb{1}\{S \text { is a clique in } G\}
$$

Ancillary Results I: Lower Bound of $\Omega\left(p^{0.4}\right)$?

We use a simple \boldsymbol{X}, first used by [FK '03], later by [MW '13], but ultimately found to be insufficient by [ВНККМР '19]:

$$
X(S):=f(|S|) \cdot \mathbb{1}\{S \text { is a clique in } G\}
$$

Theorem: [Kelner '15] For ER graphs, such proves only

$$
\mathbb{E}\left[\mathrm{SOS}_{2 d}(\mathrm{ER})\right]=\widetilde{\Omega}\left(p^{1 /(d+1)}\right)
$$

Ancillary Results I: Lower Bound of $\Omega\left(p^{0.4}\right)$?

We use a simple \boldsymbol{X}, first used by [FK '03], later by [MW '13], but ultimately found to be insufficient by [ВНККМР '19]:

$$
X(S):=f(|S|) \cdot \mathbb{1}\{S \text { is a clique in } G\}
$$

Theorem: [Kelner '15] For ER graphs, such proves only

$$
\mathbb{E}\left[\mathrm{SOS}_{2 d}(\mathrm{ER})\right]=\widetilde{\Omega}\left(p^{1 /(d+1)}\right)
$$

Theorem: [KY'22] For Paley graphs, such proves only

$$
\operatorname{SOS}_{4}\left(G_{p}\right)=\Omega\left(p^{1 / 3}\right)
$$

i.e., our main result cannot be improved without a fancier choice of $\boldsymbol{X} \leadsto$ probably significantly harder to analyze.

Ancillary Results II: Breaking the \sqrt{p} Barrier ?

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for graph matrices formed from the $\{ \pm 1\}$ adjacency matrix \boldsymbol{A}.

Ancillary Results II: Breaking the \sqrt{p} Barrier?

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for graph matrices formed from the $\{ \pm 1\}$ adjacency matrix \boldsymbol{A}.

Example: For a graph with sets of "left" and "right" vertices

we get a matrix

$$
M^{H}(G)_{(a, b),(c, d)}=\sum_{i \neq j \notin\{a, b, c, d\}} A_{a, b} A_{a, i} A_{b, i} A_{i, j} A_{j, c} A_{j, d}
$$

Ancillary Results II: Breaking the \sqrt{p} Barrier ?

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for graph matrices formed from the $\{ \pm 1\}$ adjacency matrix \boldsymbol{A}.

Theorem: [KY '22] There are some H for which

$$
\left\|\boldsymbol{M}^{H}\left(G_{p}\right)\right\| \gg \mathbb{E}\left[\left\|\boldsymbol{M}^{H}(\mathrm{ER})\right\|\right]
$$

i.e., the key technical tool does not derandomize in general (but it does for small H to get our lower bound).

Ancillary Results II: Breaking the \sqrt{p} Barrier?

Theoretical evidence: [BнкКмP '19] proof depends on norm bounds for graph matrices formed from the $\{ \pm 1\}$ adjacency matrix \boldsymbol{A}.

Theorem: [KY '22] There are some H for which

$$
\left\|\boldsymbol{M}^{H}\left(G_{p}\right)\right\| \gg \mathbb{E}\left[\left\|\boldsymbol{M}^{H}(\mathrm{ER})\right\|\right],
$$

i.e., the key technical tool does not derandomize in general (but it does for small H to get our lower bound).

Basically, can build these by taking advantage of the discrepancy between

$$
\begin{aligned}
& \boldsymbol{A}_{G_{p}}^{2}=p \boldsymbol{I}-\mathbf{1 1}^{\top}, \\
& \boldsymbol{A}_{\mathrm{ER}}^{2}=p \boldsymbol{I}+\sqrt{p} \cdot(\text { random matrix) } .
\end{aligned}
$$

Our intuition: If SOS breaks the square root barrier, it is thanks to a spectral failure of pseudorandomness:

$$
\lambda\left(G_{p}\right) \quad \neq \quad \lambda(\mathrm{ER})
$$

Proof Idea

Also boils down to bounding $\left\|\boldsymbol{M}^{H}\left(G_{p}\right)\right\|$ for various H using $\operatorname{Tr} \boldsymbol{M}^{H}(G)^{k}$, but with different tools.
[AMP '16], [BHKKMP '19]: combinatorics from $\mathbb{E}\left[\operatorname{Tr} \boldsymbol{M}^{H}(E R)^{k}\right]$
[KY '22]: character sums from $\operatorname{Tr} \boldsymbol{M}^{H}\left(G_{p}\right)^{k}$

Proof Idea

Also boils down to bounding $\left\|\boldsymbol{M}^{H}\left(G_{p}\right)\right\|$ for various H using $\operatorname{Tr} \boldsymbol{M}^{H}(G)^{k}$, but with different tools.
[AMP '16], [BHKKMP '19]: combinatorics from $\mathbb{E}\left[\operatorname{Tr} \boldsymbol{M}^{H}(E R)^{k}\right]$
[KY '22]: character sums from $\operatorname{Tr} \boldsymbol{M}^{H}\left(G_{p}\right)^{k}$
For $\chi: \mathbb{F}_{p} \rightarrow \mathbb{C}$ the Legendre symbol character,

$$
\left(\boldsymbol{A}_{G_{p}}\right)_{i, j}=\left\{\begin{array}{cc}
+1 & \text { if } i \sim j \\
-1 & \text { if } i \nsim j
\end{array}\right\}=\chi(i-j)
$$

so polynomials in χ appear in entries of \boldsymbol{M}^{H}. Not many good tools for handling $\operatorname{Tr} \boldsymbol{M}^{H}\left(G_{p}\right)^{k}$ character sums, but we can use other case-by-case tricks to mostly avoid these.

Character Sum Estimates

Typical, more classical, univariate example:
Theorem: (Weil) If $f \in \mathbb{F}_{p}[x]$ is not a multiple of a perfect square, then

$$
\left|\sum_{a \in \mathbb{F}_{p}} \chi(f(a))\right| \leq \operatorname{deg} f \cdot \sqrt{p}
$$

Character Sum Estimates

Typical, more classical, univariate example:
Theorem: (Weil) If $f \in \mathbb{F}_{p}[x]$ is not a multiple of a perfect square, then

$$
\left|\sum_{a \in \mathbb{F}_{p}} \chi(f(a))\right| \leq \operatorname{deg} f \cdot \sqrt{p}
$$

Describes square root cancellations: as though sum were of weakly correlated ± 1 signs.

Character Sum Estimates

Typical, more classical, univariate example:
Theorem: (Weil) If $f \in \mathbb{F}_{p}[x]$ is not a multiple of a perfect square, then

$$
\left|\sum_{a \in \mathbb{F}_{p}} \chi(f(a))\right| \leq \operatorname{deg} f \cdot \sqrt{p}
$$

Describes square root cancellations: as though sum were of weakly correlated ± 1 signs.

But we need the much harder multivariate case:

$$
\left|\sum_{a_{1}, \ldots, a_{k} \in \mathbb{F}_{p}} x\left(f\left(a_{1}, \ldots, a_{k}\right)\right)\right| \stackrel{?}{\lesssim} \sqrt{p^{k}} .
$$

III. Spectral Pseudorandomness

Generic MANOVA limit theorems for products of projections
[arXiv:2301.09543]

Next: How (spectrally) pseudorandom is G_{p}, if at all? Can we use this to prove clique number bounds?

The Localization Approach: Formulas

The Localization Approach: Formulas [мMP '19]

G_{p} is vertex transitive, so there is a maximum clique that contains $0 \in \mathbb{F}_{p}$.

Defining $G_{p,\{0\}}:=$ induced subgraph on $\left\{i: i \sim 0\right.$ in $\left.G_{p}\right\}$,

$$
\omega\left(G_{p}\right)=1+\omega\left(G_{p,\{0\}}\right) .
$$

The Localization Approach: Formulas [ммр’19]

G_{p} is vertex transitive, so there is a maximum clique that contains $0 \in \mathbb{F}_{p}$.

Defining $G_{p,\{0\}}:=$ induced subgraph on $\left\{i: i \sim 0\right.$ in $\left.G_{p}\right\}$,

$$
\omega\left(G_{p}\right)=1+\omega\left(G_{p,\{0\}}\right) .
$$

Why stop there? G_{p} is also edge transitive, so

$$
\omega\left(G_{p}\right)=2+\omega\left(G_{p,\{0,1\}}\right)
$$

The Localization Approach: Formulas

G_{p} is vertex transitive, so there is a maximum clique that contains $0 \in \mathbb{F}_{p}$.

Defining $G_{p,\{0\}}:=$ induced subgraph on $\left\{i: i \sim 0\right.$ in $\left.G_{p}\right\}$,

$$
\omega\left(G_{p}\right)=1+\omega\left(G_{p,\{0\}}\right) .
$$

Why stop there? G_{p} is also edge transitive, so

$$
\omega\left(G_{p}\right)=2+\omega\left(G_{p,\{0,1\}}\right) .
$$

Why stop there? We don't need transitivity; for any k,

$$
\omega\left(G_{p}\right)=k+\max _{C \text { a } k \text {-clique in } G_{p}} \omega\left(G_{p, C}\right)
$$

Local Graphs

The Localization Approach: Bounds [ммр ${ }^{\text {19] }}$

Now, can plug in our favorite clique number bounds and try to control those. [MMP '19] found empirically

$$
\omega\left(G_{p}\right) \leq 1+\operatorname{SOS}_{2}\left(G_{p,\{0\}}\right) \approx \sqrt{\frac{p}{2}} \quad(\text { state of the art! })
$$

The Localization Approach: Bounds [MМР ${ }^{19]}$

Now, can plug in our favorite clique number bounds and try to control those. [MMP '19] found empirically

$$
\omega\left(G_{p}\right) \leq 1+\operatorname{SOS}_{2}\left(G_{p,\{0\}}\right) \approx \sqrt{\frac{p}{2}} \quad(\text { state of the art! })
$$

Even simpler is spectral bound (Haemers' variation on Hoffman's):

$$
\begin{aligned}
\omega\left(G_{p}\right) & \leq k+\max _{C \text { a } k \text {-clique in } G_{p}} f\left(G_{p, C}\right), \\
f(G) & :=|V(G)|\left(\frac{\min \operatorname{deg}(\bar{G})^{2}}{\max \operatorname{deg}(\bar{G}) \cdot\left|\lambda_{\min }(\bar{G})\right|}-1\right)^{-1} .
\end{aligned}
$$

Main point: Enough to understand spectrum of the $G_{p, c}$.

Experiments: $\lambda\left(G_{p}\right)(p \approx 8000)$

Experiments: $\lambda\left(G_{p,\{0\}}\right)$

Experiments: $\lambda\left(G_{p,\{0,1\}}\right)$

Experiments: $\lambda\left(G_{p,\{0,1, x\}}\right)$

A Probabilist's Old Friend

Definition: The Kesten-McKay law with parameter $d \geq 2$ is

$$
d \mu_{\mathrm{KM}(d)}(x)=\frac{d \sqrt{4(d-1)-x^{2}}}{2 \pi\left(d^{2}-x^{2}\right)} \mathbb{1}\{|x| \leq 2 \sqrt{d-1}\} d x
$$

Also extends to $1 \leq d<2$ by adding two atoms:

$$
d \mu_{\mathrm{KM}(d)}(x)=(\cdots)+\frac{2-d}{2} \delta_{-d}(x)++\frac{2-d}{2} \delta_{d}(x)
$$

A Probabilist's Old Friend

Definition: The Kesten-McKay law with parameter $d \geq 2$ is

$$
d \mu_{\mathrm{KM}(d)}(x)=\frac{d \sqrt{4(d-1)-x^{2}}}{2 \pi\left(d^{2}-x^{2}\right)} \mathbb{1}\{|x| \leq 2 \sqrt{d-1}\} d x
$$

Also extends to $1 \leq d<2$ by adding two atoms:

$$
d \mu_{\mathrm{KM}(d)}(x)=(\cdots)+\frac{2-d}{2} \delta_{-d}(x)++\frac{2-d}{2} \delta_{d}(x)
$$

Observation: Up to rescaling and suitable shifting, empirical spectral distribution of $G_{p, C}$ looks like $\mu_{\mathrm{KM}\left(2^{|C|}\right)}$.

Let's look...

Experiments: $\lambda\left(G_{p}\right)$

Experiments: $\lambda\left(G_{p,\{0\}}\right)$

Experiments: $\lambda\left(G_{p,\{0,1\}}\right)$

Experiments: $\lambda\left(G_{p,\{0,1, x\}}\right)$

Why Does Kesten-McKay Appear?

Why Does Kesten-McKay Appear?

Related to its role in free probability:
Theorem: [Voiculescu '90s] $\boldsymbol{D} \in \mathbb{R}^{N \times N}$ diagonal with
$D_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Unif}(\{ \pm 1\}), \boldsymbol{U} \sim \operatorname{Haar}(\mathcal{U}(N))$, and \boldsymbol{M} a principal submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with each row/column included with probability $\alpha \in(0,1]$. Then,
rescaled empirical spectral distribution of $\boldsymbol{M} \Rightarrow \mu_{\mathrm{KM}(1 / \alpha)}$.

Why Does Kesten-McKay Appear?

Related to its role in free probability:
Theorem: [Voiculescu '90s] $\boldsymbol{D} \in \mathbb{R}^{N \times N}$ diagonal with $D_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Unif}(\{ \pm 1\}), \boldsymbol{U} \sim \operatorname{Haar}(\mathcal{U}(N))$, and \boldsymbol{M} a principal submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with each row/column included with probability $\alpha \in(0,1]$. Then,
rescaled empirical spectral distribution of $\boldsymbol{M} \Rightarrow \mu_{\mathrm{KM}(1 / \alpha)}$.
\boldsymbol{P} diagonal with $P_{i i} \stackrel{i \mathrm{id}}{\sim} \operatorname{Ber}(\alpha) \leadsto \boldsymbol{M}=\boldsymbol{P} \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*} \boldsymbol{P}$.

Why Does Kesten-McKay Appear?

Related to its role in free probability:
Theorem: [Voiculescu '90s] $\boldsymbol{D} \in \mathbb{R}^{N \times N}$ diagonal with
$D_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Unif}(\{ \pm 1\}), \boldsymbol{U} \sim \operatorname{Haar}(\mathcal{U}(N))$, and \boldsymbol{M} a principal submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with each row/column included with probability $\alpha \in(0,1]$. Then,
rescaled empirical spectral distribution of $\boldsymbol{M} \Rightarrow \mu_{\mathrm{KM}(1 / \alpha)}$.
\boldsymbol{P} diagonal with $P_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha) \leadsto \boldsymbol{M}=\boldsymbol{P} \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*} \boldsymbol{P}$.
\boldsymbol{P} and $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ are asymptotically free \Rightarrow Theorem.

Why Does Kesten-McKay Appear?

Related to its role in free probability:
Theorem: [Voiculescu '90s] $\boldsymbol{D} \in \mathbb{R}^{N \times N}$ diagonal with
$D_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Unif}(\{ \pm 1\}), \boldsymbol{U} \sim \operatorname{Haar}(\mathcal{U}(N))$, and \boldsymbol{M} a principal submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with each row/column included with probability $\alpha \in(0,1]$. Then,
rescaled empirical spectral distribution of $\boldsymbol{M} \Rightarrow \mu_{\mathrm{KM}(1 / \alpha)}$.
\boldsymbol{P} diagonal with $P_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha) \leadsto \boldsymbol{M}=\boldsymbol{P} \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*} \boldsymbol{P}$.
\boldsymbol{P} and $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ are asymptotically free \Longrightarrow Theorem.

Idea: derandomize this model (in $\boldsymbol{U}, \boldsymbol{D}, \boldsymbol{P}$).

Spectral Pseudorandomness for Local Graphs

Observe that

$$
\boldsymbol{A}_{G_{p, C}}=\boldsymbol{P}_{G_{p, C}} \boldsymbol{A}_{G_{p}} \boldsymbol{P}_{G_{p, C}}
$$

Spectral Pseudorandomness for Local Graphs

Observe that

$$
\boldsymbol{A}_{G_{p, C}}=\boldsymbol{P}_{G_{p, C}} \boldsymbol{A}_{G_{p}} \boldsymbol{P}_{G_{p, C}}
$$

Intuition: $G_{p, C}$ is a pseudorandom induced subgraph, like vertices were chosen independently with probability $\alpha=1 / 2^{|C|}$ (|C| "independent" adjacency relations).

Spectral Pseudorandomness for Local Graphs

Observe that

$$
\boldsymbol{A}_{G_{p, C}}=\boldsymbol{P}_{G_{p, C}} \boldsymbol{A}_{G_{p}} \boldsymbol{P}_{G_{p, C}}
$$

Intuition: $G_{p, C}$ is a pseudorandom induced subgraph, like vertices were chosen independently with probability $\alpha=1 / 2^{|C|}$ (|C| "independent" adjacency relations).

Gradual derandomization of asymptotic freeness result:

$$
\text { Reference Matrix } \quad \text { Intuition }
$$

[V'90s] $\boldsymbol{P U D U} \boldsymbol{U}^{*} \boldsymbol{P}$
[MMP '19] $\quad \boldsymbol{P} \boldsymbol{A}_{G_{p}} \boldsymbol{P}$
[K '23] $\quad \boldsymbol{P}_{G_{p, C}} \boldsymbol{A}_{G_{p}} \boldsymbol{P}_{G_{p, C}}$
pseudorandom eigenspaces
pseudorandom vertex set

Precise Statement

Theorem: [K'23] Conditional on a family of natural Legendre symbol character sum estimates, for any sequence $C_{p} \subset V\left(G_{p}\right)$ of cliques with $\left|C_{p}\right|=k$, rescaled e.s.d. of ± 1 adjacency matrix of $G_{p, C_{p}} \Rightarrow \mu_{\mathrm{KM}\left(2^{k}\right)}$.

Can prove estimates for $k=1$, and make progress for $k=2$.

Pseudorandomness at the Edges

Pseudorandomness at the Edges

Conjecture: For any $C_{p} \subset V\left(G_{p}\right)$ cliques with $\left|C_{p}\right|=k$, rescaled $\lambda_{\text {min }}\left(\pm 1\right.$ adj. matrix of $\left.G_{p, C_{p}}\right)$

$$
\geq \text { left edge of } \mu_{\mathrm{KM}\left(2^{k}\right)}-o(1),
$$

rescaled $\lambda_{\max }\left(\pm 1\right.$ adj. matrix of $\left.G_{p, C_{p}}\right)$

$$
\leq \text { right edge of } \mu_{\mathrm{KM}\left(2^{k}\right)}+o(1) .
$$

Pseudorandomness at the Edges

Conjecture: For any $C_{p} \subset V\left(G_{p}\right)$ cliques with $\left|C_{p}\right|=k$,
rescaled $\lambda_{\text {min }}\left(\pm 1\right.$ adj. matrix of $\left.G_{p, C_{p}}\right)$

$$
\geq \text { left edge of } \mu_{\mathrm{KM}\left(2^{k}\right)}-o(1),
$$

rescaled $\lambda_{\max }\left(\pm 1\right.$ adj. matrix of $\left.G_{p, C_{p}}\right)$

$$
\leq \text { right edge of } \mu_{K M\left(2^{k}\right)}+o(1) .
$$

Would imply, for any given constant k,

$$
\omega\left(G_{p}\right) \leq k+\frac{\sqrt{2^{k}-1}}{2^{k-1}} \sqrt{p}+o(\sqrt{p}) \approx 2^{-k / 2} \sqrt{p} .
$$

Already $k=3$ would beat state of the art! And arbitrary k would show $\omega\left(G_{p}\right)=o(\sqrt{p})$, "denting" the \sqrt{p} barrier.

Starting to Analyze the Edges

Edge behavior even for the classical free probability model only established using fragile "integrable" tools.

Starting to Analyze the Edges

Edge behavior even for the classical free probability model only established using fragile "integrable" tools.

Theorem: [K '23] In Voiculescu's model, $\boldsymbol{M}=$ random submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with inclusion probability α,

$$
\begin{aligned}
\lambda_{\max }(\boldsymbol{M}) & \rightarrow \text { right edge of } \mu_{\mathrm{KM}(1 / \alpha)}, \\
\lambda_{\min }(\boldsymbol{M}) & \rightarrow \text { left edge of } \mu_{\mathrm{KM}(1 / \alpha)}
\end{aligned}
$$

Starting to Analyze the Edges

Edge behavior even for the classical free probability model only established using fragile "integrable" tools.

Theorem: [K '23] In Voiculescu's model, $\boldsymbol{M}=$ random submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with inclusion probability α,

$$
\begin{aligned}
\lambda_{\max }(\boldsymbol{M}) & \rightarrow \text { right edge of } \mu_{\mathrm{KM}(1 / \alpha)}, \\
\lambda_{\min }(\boldsymbol{M}) & \rightarrow \text { left edge of } \mu_{\mathrm{KM}(1 / \alpha)}
\end{aligned}
$$

New proof combines robust trace method with recent tools [CM '17]: entry moments of \boldsymbol{U} given by Weingarten function; tools give non-asymptotic bounds.

Starting to Analyze the Edges

Edge behavior even for the classical free probability model only established using fragile "integrable" tools.

Theorem: [K '23] In Voiculescu's model, $\boldsymbol{M}=$ random submatrix of $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*}$ with inclusion probability α,

$$
\begin{aligned}
\lambda_{\max }(\boldsymbol{M}) & \rightarrow \text { right edge of } \mu_{\mathrm{KM}(1 / \alpha)}, \\
\lambda_{\min }(\boldsymbol{M}) & \rightarrow \text { left edge of } \mu_{\mathrm{KM}(1 / \alpha)}
\end{aligned}
$$

New proof combines robust trace method with recent tools [CM '17]: entry moments of \boldsymbol{U} given by Weingarten function; tools give non-asymptotic bounds.
m long but plausible road to the case of deterministic \boldsymbol{M}.

Open Questions

1. If $\mathrm{SOS}_{4}\left(G_{p}\right) \lesssim p^{1 / 2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?

Open Questions

1. If $\mathrm{SOS}_{4}\left(G_{p}\right) \lesssim p^{1 / 2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
2. Higher degrees of SOS relaxation?

Open Questions

1. If $\mathrm{SOS}_{4}\left(G_{p}\right) \lesssim p^{1 / 2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
2. Higher degrees of SOS relaxation?
3. Proof techniques to analyze edge of spectrum for matrix models with less and less randomness?

Open Questions

1. If $\mathrm{SOS}_{4}\left(G_{p}\right) \lesssim p^{1 / 2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
2. Higher degrees of SOS relaxation?
3. Proof techniques to analyze convex relaxations for matrix models with less and less randomness?

Open Questions

1. If $\mathrm{SOS}_{4}\left(G_{p}\right) \lesssim p^{1 / 2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
2. Higher degrees of SOS relaxation?
3. Proof techniques to analyze convex relaxations for matrix models with less and less randomness?
4. What other classical questions can be answered through pseudorandomness (phenomenon) leveraged via convex relaxation (proof technique)?

Thank you!

