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Paley Graph
F, := Z/pZ = finite field on p elements for p = 1 mod 4.

G, a graph on vertices F, with i ~ jiff j — 1
mod p (for some x # 0, j — i = x?).

Heuristic: Addition and are independent.
= adjacencies in G, look independent.

= G, is pseudorandom, behaving like Erdos-Rényi graph
with edge probability % (since deg(x) = "’T_l ~ %p).

Example: As p — oo,

# triangles in G, ~ E [# triangles in ER]

()6 -5
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Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?
Example: w(G) := largest clique in G. Easy calculations =
E[cw(ER)] ~ 2log, p

Same for w(G,)? Not quite...
w(Gp,) = logpilogloglog p; [Graham, Ringrose "90]
w(Gp) ~ (logp)? (numerics)
And, in any case, the best upper bounds we have are
w(Gp) =\p (spectral/Hoffman/trivial bound)
w(Gy) < W +1 [Hanson, Petridis "21]
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Big number theory question:

What proof technique can break the
“square root barrier” and prove

w(Gp) = O(p'*7%) 2



II. Sum-of-Squares Relaxations

(joint work with with Xifan Yu)

A degree 4 sum-of-squares lower bound for the clique number of the
Paley graph [arXiv:2211.02713]
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Sum-of-Squares (SOS) Relaxations

For any graph G = (V, E), have polynomial (Boolean)
optimization formulation,

w(G) = maX1z yi © yi-»i=0,
ieVv
Semidefinite programming upper bound recipe:

1. Write y®5d =[1y y® ... y®d] and X = y®sdy®gd,'
2. Find some tractable constraints on X for feasible y:

e X >0
e X;j = X(S) depends only on index set S in i, j
o X(O) =1,

3. Optimize > ;. X({i}) over that enlarged set
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14
maximize » X({i}) subject to
i=1
[ 1 X({1}) X2y X({p})
X({1}) | X({1}) X({1,2}) - X({L,p})
X =| X({2}) | X({1,2}) X({2}) - X({2,p})
| X({p}H) | X{L,pH) X({2,p}) X({p})

X({i,j}) = 0 whenever i £¢ j.

This has been studied earlier as the Lovasz function 9(G).

d=>2 ~ S0S,;(G) = w(G), tighter bounds in time p©@,
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SOS Lower Bounds for Random Graphs

To study average-case difficulty of w(-), people wanted to
understand how hard it is to compute w (ER).

Theorem: MW '13]..[BHKKMP '19] For any fixed d, as p — oo,

E[SOS»4(ER)] = Q(p'?°W) > O(logp) = E[w(ER)].

Question: Does this transfer to Paley graphs, showing that
low-degree SOS cannot break the ,/p barrier?
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[Gvozdenovi¢, Laurent, Vallentin '09; Kobzar, Mody ’23 (forthcoming)]
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Our Results

Main message: Degree 4 SOS might improve on the
w(Gy) < /p bound, but subject to limitations.

Easy to show: SOS,(G,) = p'/°.
Main theorem: [KY '22] SOS4(G,) = Q(p''").

Remarks:

1. Derandomizes an early result on the random graph
case: [DM '15] showed E[SOS4(ER)] = Q(p!/3).

2. Compatible with numerics: maybe SOS4(G,) ~ p
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Ancillary Results I: Lower Bound of Q(p"")?

We use a simple X, first used by [FK '03], later by [MW "13],
but ultimately found to be insufficient by [BHKKMP 19

X(S):= f(S]) - 1{S is a clique in G}.
Theorem: [Kelner '15] For ER graphs, such proves only

E[SOS24(ER)] = Q(p!/ @),

Theorem: [KY 22| For Paley graphs, such proves only
SOS4(Gp) = Q(pl/g)’

i.e., our main result cannot be improved without a fancier
choice of X ~ probably significantly harder to analyze.



Ancillary Results II: Breaking the ./p Barrier?

Theoretical evidence: [BHKKMP '19] proof depends on norm
bounds for graph matrices formed from the {+1}
adjacency matrix A.



Ancillary Results II: Breaking the ,/p Barrier?

Theoretical evidence: [BHKKMP '19] proof depends on norm
bounds for graph matrices formed from the {+1}
adjacency matrix A.

Example: For a graph with sets of “left” and “right” vertices

we get a matrix

MG ey = Z AupAaiApiAi A A
i=j ¢ {a,b,c,d}
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Ancillary Results II: Breaking the ,/p Barrier?

Theoretical evidence: [BHKKMP '19] proof depends on norm
bounds for graph matrices formed from the {+1}
adjacency matrix A.

Theorem: [KY 22| There are some H for which
IM™(Gp) | > E[IIMPER)I],

i.e., the key technical tool does not derandomize in general
(but it does for small H to get our lower bound).

Basically, can build these by taking advantage of the
discrepancy between

Ag =pI-117,
AZg = pI + /p - (random matrix).



Our intuition: If SOS breaks the square
root barrier, it is thanks to a spectral
failure of pseudorandomness:

MG,  # AR

0.010

0.30 0.008

0.006

0.15 0.004

0.002

0.00 0.000




Proof Idea

Also boils down to bounding |M"(G,)|| for various H using
Tr MH(G)¥, but with different tools.
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Proof Idea

Also boils down to bounding |M"(G,)|| for various H using
Tr MH(G)¥, but with different tools.

[AMP "16], [BHKKMP '19]: combinatorics from E[Tr MZ(ER)¥]
[KY '22]: character sums from Tr M"(G,)k

For x : F, — C the Legendre symbol character,

I A A IO
(Ac,,)i,j—{ 1 ifid }—X(l J),

so polynomials in x appear in entries of M. Not many
good tools for handling Tr MH(Gp)k character sums, but we
can use other case-by-case tricks to mostly avoid these.
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Character Sum Estimates

Typical, more classical, univariate example:

Theorem: (Weil) If f € F,[x] is not a multiple of a perfect
square, then

> x(f(a)

aclky

<deg.f - P

Describes square root cancellations: as though sum were of
weakly correlated +1 signs.

But we need the much harder multivariate case:

L

Z x(f(as,...,ax))




III. Spectral Pseudorandomness

Generic MANOVA limit theorems for products of projections
[arXiv:2301.09543]



Next: How (spectrally) pseudorandom is
Gp, if at all? Can we use this to prove
clique number bounds?
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The Localization Approach: Formulas e 19

Gy is vertex transitive, so there is a maximum clique that
contains 0 € [p.

Defining G, o) := induced subgraph on {i:i ~ 01in G,},
w(Gyp) =1+ w(Gp,i0y)-

Why stop there? G, is also edge transitive, so
w(Gp) =2+ w(Gp,013)-

Why stop there? We don’t need transitivity; for any k,

w(Gp) =k + max w(Gp,c).
C a k-clique in Gp



Local Graphs

25
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Now, can plug in our favorite clique number bounds and try
to control those. [MMP ’'19] found empirically
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The Localization Approach: Bounds e 19

Now, can plug in our favorite clique number bounds and try
to control those. [MMP ’'19] found empirically

w(Gp) =1+ S0S2(Gp,10y) = \/g (state of the art!)

Even simpler is spectral bound (Haemers’ variation on
Hoffman’s):

w(Gp) <k + Cak-g?tqall)éinpr(Gp'C)’

min deg(G)2 1)‘1

Main point: Enough to understand spectrum of the G, c.



Experiments: A(G,) (p = 8000)
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Experiments: A(Gyp,{0})
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Experiments: A(Gyp,0,1})
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Experiments: A(Gyp,0,1,x})
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A Probabilist’s Old Friend

Definition: The Kesten-McKay law with parameter d > 2 is

d4(d —-1) — x?
21 (d? — x?)

dukma) (x) = 1{|x| < 2+d — l} dx

Also extends to 1 < d < 2 by adding two atoms:

2-d 2-d
dukma (x) = (---) + Té—d(x) 5

5d(X).



A Probabilist’s Old Friend

Definition: The Kesten-McKay law with parameter d > 2 is

d4(d —-1) — x?
21 (d? — x?)

dukma) (x) = 1{|x| < 2+d — l} dx

Also extends to 1 < d < 2 by adding two atoms:

2-d 2-d
dukma (x) = (---) + Té—d(x) 5

5d(X).

Observation: Up to rescaling and suitable shifting,
empirical spectral distribution of G, ¢ looks like pgmiciy.

Let’s look...
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Experiments: A(Gp,0})
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Experiments: A(Gyp,{0,1})
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Experiments: A(Gyp,0,1,x})
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Why Does Kesten-McKay Appear?

Related to its role in free probability:

Theorem: |Voiculescu '90s] D € RN*N diagonal with
Dy © Unif({+1}), U ~ Haar(U(N)), and M a principal

submatrix of UDU™ with each row/column included with
probability « € (0, 1]. Then,

rescaled empirical spectral distribution of M = Lkm(1/)-
P diagonal with P;; ¥ Ber(o) ~ M = PUDU*P.

P and UDU* are asymptotically free = Theorem.

Idea: derandomize this model (in U, D, P).
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Spectral Pseudorandomness for Local Graphs

Observe that
AGM = PGP’CAGpPGp,C.

Intuition: G, ¢ is a pseudorandom induced subgraph, like
vertices were chosen independently with probability
o = 1/2'“"(|C| “independent” adjacency relations).

Gradual derandomization of asymptotic freeness result:

Reference Matrix Intuition

[V ’90s] PUDU*P
[MMP '19] PAg,P pseudorandom eigenspaces
[K 23] P¢, Ac,Pc,. pseudorandom vertex set



Precise Statement

Theorem: K 23] Conditional on a family of natural
Legendre symbol character sum estimates, for any
sequence C, C V(G,) of cliques with [C,,| =k,

rescaled e.s.d. of +1 adjacency matrix of G, c, = Hkm(k)-

Can prove estimates for k = 1, and make progress for k = 2.
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Pseudorandomness at the Edges

Conjecture: For any C, C V(G,) cliques with |C,| = k,

rescaled A, (+1 adj. matrix of G, c,)
> left edge of pxmer) —o(1),

rescaled A, (=1 adj. matrix of G, c,)
< right edge of pgkmek) + 0(1).

Would imply, for any given constant k,

w(Gy) <k + - f+o(f) 2k p.

Already k = 3 would beat state of the art! And arbitrary k
would show w(G,) = o(,/p), “denting” the ./p barrier.
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Starting to Analyze the Edges
Edge behavior even for the classical free probability model
only established using fragile “integrable” tools.

Theorem: (K 23] In Voiculescu’s model, M = random
submatrix of UDU™* with inclusion probability «,

2\ma><(M) - right edge of HKM(1/ )5
Amin(M) - left edge of pxkm/e-

New proof combines robust trace method with recent tools
[CM '17]: entry moments of U given by ;
tools give

~ long but plausible road to the case of deterministic M.
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Open Questions

1. If SOS4(G,) < p'/* ¢, how to extract formal proofs
from SOS numerics or graph matrix computations?

2. Higher degrees of SOS relaxation?

3. Proof techniques to analyze convex relaxations for
matrix models with less and less randomness?

4., What other classical questions can be answered
through leveraged
via convex relaxation (proof technique)?



Thank you!



