Spectral pseudorandomness and the clique number of the Paley graph

Tim Kunisky

Yale University

MIT Stochastics and Statistics Seminar March 3, 2023

I. Introduction

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} =$ finite field on *p* elements for $p \equiv 1 \mod 4$.

 G_p a graph on vertices \mathbb{F}_p with $i \sim j$ iff j - i is a **square** mod p (for some $x \neq 0$, $j - i = x^2$).

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} =$ finite field on *p* elements for $p \equiv 1 \mod 4$.

 G_p a graph on vertices \mathbb{F}_p with $i \sim j$ iff j - i is a **square** mod p (for some $x \neq 0$, $j - i = x^2$).

Example: $p = 5 \iff$ squares are $\{1, 4 \equiv -1\}$.

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} =$ finite field on *p* elements for $p \equiv 1 \mod 4$.

 G_p a graph on vertices \mathbb{F}_p with $i \sim j$ iff j - i is a square mod p (for some $x \neq 0$, $j - i = x^2$).

Heuristic: Addition and multiplication are independent.

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} =$ finite field on *p* elements for $p \equiv 1 \mod 4$.

 G_p a graph on vertices \mathbb{F}_p with $i \sim j$ iff j - i is a square mod p (for some $x \neq 0$, $j - i = x^2$).

Heuristic: Addition and multiplication are independent.

 \Rightarrow adjacencies in G_p look independent.

 \Rightarrow *G*_{*p*} is **pseudorandom**, behaving like Erdős-Rényi graph with edge probability $\frac{1}{2}$ (since deg(x) = $\frac{p-1}{2} \sim \frac{1}{2}p$).

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} =$ finite field on *p* elements for $p \equiv 1 \mod 4$.

 G_p a graph on vertices \mathbb{F}_p with $i \sim j$ iff j - i is a square mod p (for some $x \neq 0$, $j - i = x^2$).

Heuristic: Addition and multiplication are independent.

 \Rightarrow adjacencies in G_p look independent.

 \Rightarrow *G*_{*p*} is **pseudorandom**, behaving like Erdős-Rényi graph with edge probability $\frac{1}{2}$ (since deg(x) = $\frac{p-1}{2} \sim \frac{1}{2}p$).

Example: As $p \to \infty$,

triangles in $G_p \sim \mathbb{E} [$ # triangles in ER] $= \binom{p}{3} \left(\frac{1}{2}\right)^3 \sim \frac{1}{48}p^3.$

Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?

Example: $\omega(G) :=$ **largest clique** in *G*.

Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?

Example: $\omega(G) :=$ **largest clique** in *G*. Easy calculations \Rightarrow

 $\mathbb{E}[\omega(\mathsf{ER})] \sim 2\log_2 p$

Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?

Example: $\omega(G) :=$ **largest clique** in *G*. Easy calculations \Rightarrow

 $\mathbb{E}[\boldsymbol{\omega}(\mathsf{ER})] \sim 2\log_2 p$

Same for $\omega(G_p)$? Not quite...

 $\omega(G_{p_i}) \ge \log p_i \log \log \log p_i$ [Graham, Ringrose '90] $\omega(G_p) \stackrel{?}{\sim} (\log p)^2$ (numerics)

And, in any case, the best **upper bounds** we have are

 $\omega(G_p) \le \sqrt{p}$ (spectral/Hoffman/trivial bound) $\omega(G_p) \le \sqrt{p/2} + 1$ [Hanson, Petridis '21]

Big **number theory** question: What proof technique can break the **"square root barrier"** and prove

$$\omega(G_p) = O(p^{1/2-\varepsilon}) ?$$

II. Sum-of-Squares Relaxations

(joint work with with Xifan Yu)

A degree 4 sum-of-squares lower bound for the clique number of the Paley graph [arXiv:2211.02713]

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

Semidefinite programming upper bound recipe:

1. Write $\boldsymbol{y}^{\otimes \leq d} = \begin{bmatrix} 1 \ \boldsymbol{y} \ \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d} \end{bmatrix}$ and $\boldsymbol{X} = \boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

Semidefinite programming upper bound recipe:

1. Write
$$\mathbf{y}^{\otimes \leq d} = \begin{bmatrix} 1 \ \mathbf{y} \ \mathbf{y}^{\otimes 2} \cdots \mathbf{y}^{\otimes d} \end{bmatrix}$$
 and $\mathbf{X} = \mathbf{y}^{\otimes \leq d} \mathbf{y}^{\otimes \leq d^{\top}}$

2. Find some tractable constraints on *X* for feasible *y*:

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

Semidefinite programming upper bound recipe:

1. Write
$$\boldsymbol{y}^{\otimes \leq d} = [1 \ \boldsymbol{y} \ \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d}]$$
 and $\boldsymbol{X} = \boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$

2. Find some tractable constraints on *X* for feasible y:

•
$$X \succeq 0$$

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

- 1. Write $\boldsymbol{y}^{\otimes \leq d} = \begin{bmatrix} 1 \ \boldsymbol{y} \ \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d} \end{bmatrix}$ and $\boldsymbol{X} = \boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
- 2. Find some tractable constraints on *X* for feasible *y*:
 - $X \succeq 0$
 - $X_{i,j} = y_{i_1} \cdots y_{i_k} y_{j_1} \cdots y_{j_\ell}$

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

- 1. Write $\boldsymbol{y}^{\otimes \leq d} = \begin{bmatrix} 1 \ \boldsymbol{y} \ \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d} \end{bmatrix}$ and $\boldsymbol{X} = \boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
- 2. Find some tractable constraints on *X* for feasible *y*:
 - $X \succeq 0$
 - $X_{i,j} = X(S)$ depends only on index set S in i, j

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, \quad y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

- 1. Write $\boldsymbol{y}^{\otimes \leq d} = \begin{bmatrix} 1 \ \boldsymbol{y} \ \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d} \end{bmatrix}$ and $\boldsymbol{X} = \boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
- 2. Find some tractable constraints on *X* for feasible *y*:
 - $X \succeq 0$
 - $X_{i,j} = X(S)$ depends only on index set S in i, j
 - $X(\emptyset) = 1$, X(S) = 0 for all *S* not a clique in *G*

For any graph G = (V, E), have polynomial (Boolean) optimization formulation,

$$\omega(G) = \max\left\{\sum_{i \in V} y_i : y_i^2 - y_i = 0, y_i y_j = 0 \text{ if } \{i, j\} \notin E\right\}$$

- 1. Write $\boldsymbol{y}^{\otimes \leq d} = \begin{bmatrix} 1 \ \boldsymbol{y} \ \boldsymbol{y}^{\otimes 2} \cdots \boldsymbol{y}^{\otimes d} \end{bmatrix}$ and $\boldsymbol{X} = \boldsymbol{y}^{\otimes \leq d} \boldsymbol{y}^{\otimes \leq d^{\top}}$
- 2. Find some tractable constraints on *X* for feasible γ :
 - $X \succeq 0$
 - $X_{i,j} = X(S)$ depends only on index set S in i, j
 - $X(\emptyset) = 1$, X(S) = 0 for all *S* not a clique in *G*
- 3. Optimize $\sum_{i \in V} X(\{i\})$ over that enlarged set

maximize $\sum_{i=1}^{p} X(\{i\})$ subject to

	1	$X(\{1\})$	$X(\{2\})$		$X(\{p\})$]
	$X(\{1\})$	$X(\{1\})$	$X(\{1,2\})$	• • •	$X(\{1,p\})$	
X =	$X(\{2\})$	$X(\{1,2\})$	$X(\{2\})$		$X(\{2,p\})$	≥ 0,
	÷	÷	÷	۰.	÷	
	$X(\{p\})$	$X(\{1,p\})$	$X(\{2,p\})$		$X(\{p\})$	

 $X(\{i, j\}) = 0$ whenever $i \neq_G j$.

maximize $\sum_{i=1}^{p} X(\{i\})$ subject to

	1	$X(\{1\})$	$X(\{2\})$		$X(\{p\})$]
	$X(\{1\})$	$X(\{1\})$	$X(\{1,2\})$	• • •	$X(\{1,p\})$	
X =	$X(\{2\})$	$X(\{1,2\})$	$X(\{2\})$		$X(\{2,p\})$	≥ 0,
	÷	÷	÷	۰.	÷	
	$X(\{p\})$	$X(\{1,p\})$	$X(\{2,p\})$		$X(\{p\})$	

 $X(\{i, j\}) = 0$ whenever $i \neq_G j$.

This has been studied earlier as the **Lovász function** $\vartheta(\overline{G})$.

maximize $\sum_{i=1}^{p} X(\{i\})$ subject to

	1	$X(\{1\})$	$X(\{2\})$		$X(\{p\})$]
	$X(\{1\})$	$X(\{1\})$	$X(\{1,2\})$	• • •	$X(\{1,p\})$	
X =	$X(\{2\})$	$X(\{1,2\})$	$X(\{2\})$		$X(\{2,p\})$	≥ 0,
	÷	÷	÷	۰.	÷	
	$X(\{p\})$	$X(\{1,p\})$	$X(\{2,p\})$		$X(\{p\})$	

 $X(\{i, j\}) = 0$ whenever $i \neq_G j$.

This has been studied earlier as the **Lovász function** $\vartheta(\overline{G})$.

 $d \ge 2 \rightsquigarrow SOS_{2d}(G) \ge \omega(G)$, tighter bounds in time $p^{O(d)}$.

SOS Lower Bounds for Random Graphs

To study average-case difficulty of $\omega(\cdot)$, people wanted to understand how hard it is to compute $\omega(ER)$.

SOS Lower Bounds for Random Graphs

To study average-case difficulty of $\omega(\cdot)$, people wanted to understand how hard it is to compute $\omega(ER)$.

Theorem: [MW '13]...[BHKKMP '19] For any fixed *d*, as $p \rightarrow \infty$,

 $\mathbb{E}\left[\mathsf{SOS}_{2d}(\mathsf{ER})\right] = \Omega(p^{1/2-o(1)}) \gg O(\log p) = \mathbb{E}[\omega(\mathsf{ER})].$

SOS Lower Bounds for Random Graphs

To study average-case difficulty of $\omega(\cdot)$, people wanted to understand how hard it is to compute $\omega(ER)$.

Theorem: [MW '13]...[BHKKMP '19] For any fixed *d*, as $p \rightarrow \infty$,

 $\mathbb{E}\left[\mathsf{SOS}_{2d}(\mathsf{ER})\right] = \Omega(p^{1/2-o(1)}) \gg O(\log p) = \mathbb{E}[\omega(\mathsf{ER})].$

Question: Does this transfer to Paley graphs, showing that low-degree SOS cannot break the \sqrt{p} barrier?

[Gvozdenović, Laurent, Vallentin '09; Kobzar, Mody '23 (forthcoming)]

Our Results

Main message: Degree 4 SOS might improve on the $\omega(G_p) \leq \sqrt{p}$ bound, but subject to limitations.

Our Results

Main message: Degree 4 SOS might improve on the $\omega(G_p) \leq \sqrt{p}$ bound, but subject to limitations.

Easy to show: $SOS_2(G_p) = p^{1/2}$.

Our Results

Main message: Degree 4 SOS might improve on the $\omega(G_p) \leq \sqrt{p}$ bound, but subject to limitations.

Easy to show: $SOS_2(G_p) = p^{1/2}$.

Main theorem: [KY '22] $SOS_4(G_p) = \Omega(p^{1/3})$.
Our Results

Main message: Degree 4 SOS might improve on the $\omega(G_p) \leq \sqrt{p}$ bound, but subject to limitations.

Easy to show: $SOS_2(G_p) = p^{1/2}$.

Main theorem: [KY '22] $SOS_4(G_p) = \Omega(p^{1/3})$.

Remarks:

1. Derandomizes an early result on the random graph case: [DM '15] showed $\mathbb{E}[SOS_4(ER)] = \widetilde{\Omega}(p^{1/3})$.

Our Results

Main message: Degree 4 SOS might improve on the $\omega(G_p) \leq \sqrt{p}$ bound, but subject to limitations.

Easy to show: $SOS_2(G_p) = p^{1/2}$.

Main theorem: [KY '22] $SOS_4(G_p) = \Omega(p^{1/3})$.

Remarks:

- 1. Derandomizes an early result on the random graph case: [DM '15] showed $\mathbb{E}[SOS_4(ER)] = \widetilde{\Omega}(p^{1/3})$.
- 2. Compatible with numerics: maybe $SOS_4(G_p) \sim p^{0.4}$.

We use a simple *X*, first used by [FK '03], later by [MW '13], but ultimately found to be insufficient by [BHKKMP '19]:

 $X(S) := f(|S|) \cdot \mathbb{1}{S \text{ is a clique in } G}.$

We use a simple *X*, first used by [FK '03], later by [MW '13], but ultimately found to be insufficient by [BHKKMP '19]:

 $X(S) := f(|S|) \cdot \mathbb{1}\{S \text{ is a clique in } G\}.$

Theorem: [Kelner '15] For ER graphs, such proves only

 $\mathbb{E}\left[\mathsf{SOS}_{2d}(\mathsf{ER})\right] = \widetilde{\Omega}(p^{1/(d+1)}).$

We use a simple *X*, first used by [FK '03], later by [MW '13], but ultimately found to be insufficient by [BHKKMP '19]:

 $X(S) := f(|S|) \cdot \mathbb{1}\{S \text{ is a clique in } G\}.$

Theorem: [Kelner '15] For ER graphs, such proves only

 $\mathbb{E}\left[\mathsf{SOS}_{2d}(\mathsf{ER})\right] = \widetilde{\Omega}(p^{1/(d+1)}).$

Theorem: [KY '22] For Paley graphs, such proves only

$$\mathsf{SOS}_4(G_p) = \Omega(p^{1/3}),$$

i.e., our main result cannot be improved without a fancier choice of $X \rightsquigarrow$ probably significantly harder to analyze.

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for **graph matrices** formed from the $\{\pm 1\}$ adjacency matrix *A*.

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for **graph matrices** formed from the $\{\pm 1\}$ adjacency matrix *A*.

Example: For a graph with sets of "left" and "right" vertices

we get a matrix

$$M^{H}(G)_{(a,b),(c,d)} = \sum_{i \neq j \notin \{a,b,c,d\}} A_{a,b} A_{a,i} A_{b,i} A_{i,j} A_{j,c} A_{j,d}.$$

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for **graph matrices** formed from the $\{\pm 1\}$ adjacency matrix *A*.

Theorem: [KY '22] There are some *H* for which

 $\|\boldsymbol{M}^{H}(\boldsymbol{G}_{p})\| \gg \mathbb{E}\left[\|\boldsymbol{M}^{H}(\mathsf{ER})\|\right],$

i.e., the key technical tool does not derandomize **in general** (but it does **for small** *H* to get our lower bound).

Theoretical evidence: [BHKKMP '19] proof depends on norm bounds for **graph matrices** formed from the $\{\pm 1\}$ adjacency matrix *A*.

Theorem: [KY '22] There are some *H* for which

 $\|\boldsymbol{M}^{H}(\boldsymbol{G}_{p})\| \gg \mathbb{E}\left[\|\boldsymbol{M}^{H}(\mathsf{ER})\|\right],$

i.e., the key technical tool does not derandomize **in general** (but it does **for small** *H* to get our lower bound).

Basically, can build these by taking advantage of the discrepancy between

$$A_{G_p}^2 = pI - 11^{\top},$$

 $A_{ER}^2 = pI + \sqrt{p} \cdot (random matrix).$

Our intuition: If SOS breaks the square root barrier, it is thanks to a **spectral** failure of pseudorandomness:

 $\lambda(G_p) \not\approx \lambda(\mathsf{ER})$

Proof Idea

Also boils down to bounding $||M^H(G_p)||$ for various *H* using Tr $M^H(G)^k$, but with different tools.

[AMP '16], [BHKKMP '19]: combinatorics from $\mathbb{E}[\text{Tr} M^{H}(\text{ER})^{k}]$

[KY '22]: character sums from $\operatorname{Tr} M^H(G_p)^k$

Proof Idea

Also boils down to bounding $||M^H(G_p)||$ for various *H* using Tr $M^H(G)^k$, but with different tools.

[AMP '16], [BHKKMP '19]: combinatorics from $\mathbb{E}[\operatorname{Tr} M^{H}(\operatorname{ER})^{k}]$ [KY '22]: character sums from $\operatorname{Tr} M^{H}(G_{n})^{k}$

For $\chi : \mathbb{F}_p \to \mathbb{C}$ the **Legendre symbol** character,

$$(\mathbf{A}_{G_p})_{i,j} = \left\{ \begin{array}{cc} +1 & \text{if } i \sim j \\ -1 & \text{if } i \neq j \end{array} \right\} = \chi(i-j),$$

so polynomials in χ appear in entries of M^H . Not many good tools for handling Tr $M^H(G_p)^k$ character sums, but we can use other case-by-case tricks to mostly avoid these.

Character Sum Estimates

Typical, more classical, univariate example:

Theorem: (Weil) If $f \in \mathbb{F}_p[x]$ is not a multiple of a perfect square, then

$$\left|\sum_{a\in\mathbb{F}_p}\chi(f(a))\right|\leq \deg f\cdot\sqrt{p}.$$

Character Sum Estimates

Typical, more classical, univariate example:

Theorem: (Weil) If $f \in \mathbb{F}_p[x]$ is not a multiple of a perfect square, then

$$\left|\sum_{a\in\mathbb{F}_p}\chi(f(a))\right|\leq \deg f\cdot\sqrt{p}.$$

Describes square root cancellations: as though sum were of weakly correlated ± 1 signs.

Character Sum Estimates

Typical, more classical, univariate example:

Theorem: (Weil) If $f \in \mathbb{F}_p[x]$ is not a multiple of a perfect square, then

$$\left|\sum_{a\in\mathbb{F}_p}\chi(f(a))\right|\leq \deg f\cdot\sqrt{p}.$$

Describes square root cancellations: as though sum were of weakly correlated ± 1 signs.

But we need the **much harder** multivariate case:

$$\left|\sum_{a_1,\ldots,a_k\in\mathbb{F}_p}\chi(f(a_1,\ldots,a_k))\right| \stackrel{?}{\lesssim} \sqrt{p^k}.$$

III. Spectral Pseudorandomness

Generic MANOVA limit theorems for products of projections [arXiv:2301.09543] **Next:** How (spectrally) pseudorandom is G_p , if at all? Can we use this to prove clique number bounds?

 G_p is **vertex transitive**, so there is a maximum clique that contains $0 \in \mathbb{F}_p$.

Defining $G_{p,\{0\}}$:= induced subgraph on $\{i : i \sim 0 \text{ in } G_p\}$,

 $\omega(G_p) = 1 + \omega(G_{p,\{0\}}).$

 G_p is **vertex transitive**, so there is a maximum clique that contains $0 \in \mathbb{F}_p$.

Defining $G_{p,\{0\}}$:= induced subgraph on $\{i : i \sim 0 \text{ in } G_p\}$,

 $\omega(G_p) = 1 + \omega(G_{p,\{0\}}).$

Why stop there? G_p is also **edge transitive**, so

$$\omega(G_p) = 2 + \omega(G_{p,\{0,1\}}).$$

 G_p is **vertex transitive**, so there is a maximum clique that contains $0 \in \mathbb{F}_p$.

Defining $G_{p,\{0\}}$:= induced subgraph on $\{i : i \sim 0 \text{ in } G_p\}$,

 $\omega(G_p) = 1 + \omega(G_{p,\{0\}}).$

Why stop there? G_p is also **edge transitive**, so

$$\omega(G_p) = 2 + \omega(G_{p,\{0,1\}}).$$

Why stop there? We don't need transitivity; for any k,

$$\omega(G_p) = k + \max_{C \text{ a } k-\text{clique in } G_p} \omega(G_{p,C}).$$

Local Graphs

Now, can plug in our favorite clique number bounds and try to control those. [MMP '19] found empirically

$$\omega(G_p) \le 1 + \mathsf{SOS}_2(G_{p,\{0\}}) \approx \sqrt{\frac{p}{2}}$$
 (state of the art!)

Now, can plug in our favorite clique number bounds and try to control those. [MMP '19] found empirically

$$\omega(G_p) \le 1 + \mathsf{SOS}_2(G_{p,\{0\}}) \approx \sqrt{\frac{p}{2}}$$
 (state of the art!)

Even simpler is **spectral bound** (Haemers' variation on Hoffman's):

$$w(G_p) \le k + \max_{C \text{ a } k-\text{clique in } G_p} f(G_{p,C}),$$
$$f(G) := |V(G)| \left(\frac{\min \deg(\overline{G})^2}{\max \deg(\overline{G}) \cdot |\lambda_{\min}(\overline{G})|} - 1\right)^{-1}$$

Main point: Enough to understand **spectrum** of the $G_{p,C}$.

Experiments: $\lambda(G_p)$ ($p \approx 8000$)

Experiments: $\lambda(G_{p,\{0\}})$

Experiments: $\lambda(G_{p,\{0,1\}})$

Experiments: $\lambda(G_{p,\{0,1,x\}})$

A Probabilist's Old Friend

Definition: The **Kesten-McKay law** with parameter $d \ge 2$ is

$$d\mu_{\mathsf{KM}(d)}(x) = rac{d\sqrt{4(d-1)-x^2}}{2\pi(d^2-x^2)} \, \mathbb{1}\left\{ |x| \le 2\sqrt{d-1}
ight\} \, dx$$

Also extends to $1 \le d < 2$ by adding two atoms:

$$d\mu_{\mathsf{KM}(d)}(x) = (\cdots) + \frac{2-d}{2}\delta_{-d}(x) + + \frac{2-d}{2}\delta_{d}(x).$$

A Probabilist's Old Friend

Definition: The **Kesten-McKay law** with parameter $d \ge 2$ is

$$d\mu_{\mathsf{KM}(d)}(x) = rac{d\sqrt{4(d-1)-x^2}}{2\pi(d^2-x^2)} \mathbb{1}\left\{|x| \le 2\sqrt{d-1}
ight\} dx$$

Also extends to $1 \le d < 2$ by adding two atoms:

$$d\mu_{\mathsf{KM}(d)}(x) = (\cdots) + \frac{2-d}{2}\delta_{-d}(x) + + \frac{2-d}{2}\delta_{d}(x).$$

Observation: Up to rescaling and suitable shifting, empirical spectral distribution of $G_{p,C}$ looks like $\mu_{\text{KM}(2^{|C|})}$.

Let's look...

Experiments: $\lambda(G_p)$

Experiments: $\lambda(G_{p,\{0\}})$

Experiments: $\lambda(G_{p,\{0,1\}})$

Experiments: $\lambda(G_{p,\{0,1,x\}})$

Why Does Kesten-McKay Appear?
Related to its role in **free probability**:

Theorem: [Voiculescu '90s] $D \in \mathbb{R}^{N \times N}$ diagonal with $D_{ii} \stackrel{\text{iid}}{\sim} \text{Unif}(\{\pm 1\}), U \sim \text{Haar}(\mathcal{U}(N)), \text{ and } M \text{ a principal}$ submatrix of UDU^* with each row/column included with probability $\alpha \in (0, 1]$. Then,

rescaled empirical spectral distribution of $M \Rightarrow \mu_{\text{KM}(1/\alpha)}$.

Related to its role in **free probability**:

Theorem: [Voiculescu '90s] $D \in \mathbb{R}^{N \times N}$ diagonal with $D_{ii} \stackrel{\text{iid}}{\sim} \text{Unif}(\{\pm 1\}), U \sim \text{Haar}(\mathcal{U}(N)), \text{ and } M \text{ a principal}$ submatrix of UDU^* with each row/column included with probability $\alpha \in (0, 1]$. Then,

rescaled empirical spectral distribution of $M \Rightarrow \mu_{KM(1/\alpha)}$.

P diagonal with $P_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha) \rightsquigarrow M = PUDU^*P$.

Related to its role in **free probability**:

Theorem: [Voiculescu '90s] $D \in \mathbb{R}^{N \times N}$ diagonal with $D_{ii} \stackrel{\text{iid}}{\sim} \text{Unif}(\{\pm 1\}), U \sim \text{Haar}(\mathcal{U}(N)), \text{ and } M \text{ a principal}$ submatrix of UDU^* with each row/column included with probability $\alpha \in (0, 1]$. Then,

rescaled empirical spectral distribution of $M \Rightarrow \mu_{KM(1/\alpha)}$.

P diagonal with $P_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha) \rightsquigarrow M = PUDU^*P$.

P and UDU^* are asymptotically free \Rightarrow Theorem.

Related to its role in **free probability**:

Theorem: [Voiculescu '90s] $D \in \mathbb{R}^{N \times N}$ diagonal with $D_{ii} \stackrel{\text{iid}}{\sim} \text{Unif}(\{\pm 1\}), U \sim \text{Haar}(\mathcal{U}(N)), \text{ and } M \text{ a principal}$ submatrix of UDU^* with each row/column included with probability $\alpha \in (0, 1]$. Then,

rescaled empirical spectral distribution of $M \Rightarrow \mu_{KM(1/\alpha)}$.

P diagonal with $P_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha) \rightsquigarrow M = PUDU^*P$.

P and UDU^* are asymptotically free \Rightarrow Theorem.

Idea: **derandomize** this model (in *U*, *D*, *P*).

Spectral Pseudorandomness for Local Graphs

Observe that

$$\boldsymbol{A}_{G_{p,C}} = \boldsymbol{P}_{G_{p,C}} \boldsymbol{A}_{G_p} \boldsymbol{P}_{G_{p,C}}.$$

Spectral Pseudorandomness for Local Graphs

Observe that

$$\boldsymbol{A}_{G_{p,C}} = \boldsymbol{P}_{G_{p,C}} \boldsymbol{A}_{G_p} \boldsymbol{P}_{G_{p,C}}.$$

Intuition: $G_{p,C}$ is a pseudorandom induced subgraph, like vertices were chosen independently with probability $\alpha = 1/2^{|C|}$ (|C| "independent" adjacency relations).

Spectral Pseudorandomness for Local Graphs

Observe that

$$\boldsymbol{A}_{G_{p,C}} = \boldsymbol{P}_{G_{p,C}} \boldsymbol{A}_{G_p} \boldsymbol{P}_{G_{p,C}}.$$

Intuition: $G_{p,C}$ is a pseudorandom induced subgraph, like vertices were chosen independently with probability $\alpha = 1/2^{|C|}$ (|C| "independent" adjacency relations).

Gradual derandomization of asymptotic freeness result:

Reference	Matrix	Intuition
[V '90s]	PUDU*P	
[MMP '19]	$\boldsymbol{P}\boldsymbol{A}_{G_p}\boldsymbol{P}$	pseudorandom eigenspaces
[K '23]	$\boldsymbol{P}_{G_{p,C}}\boldsymbol{A}_{G_p}\boldsymbol{P}_{G_{p,C}}$	pseudorandom vertex set

Theorem: [K '23] Conditional on a family of natural Legendre symbol character sum estimates, for any sequence $C_p \subset V(G_p)$ of cliques with $|C_p| = k$,

rescaled e.s.d. of ± 1 adjacency matrix of $G_{p,C_p} \Rightarrow \mu_{\mathsf{KM}(2^k)}$.

Can prove estimates for k = 1, and make progress for k = 2.

Pseudorandomness at the Edges

Pseudorandomness at the Edges

Conjecture: For any $C_p \subset V(G_p)$ cliques with $|C_p| = k$,

rescaled $\lambda_{\min}(\pm 1 \text{ adj. matrix of } G_{p,C_p})$ $\geq \text{left edge of } \mu_{\mathsf{KM}(2^k)} - o(1),$

rescaled $\lambda_{\max}(\pm 1 \text{ adj. matrix of } G_{p,C_p})$ $\leq \text{right edge of } \mu_{\mathsf{KM}(2^k)} + o(1).$

Pseudorandomness at the Edges

Conjecture: For any $C_p \subset V(G_p)$ cliques with $|C_p| = k$,

rescaled $\lambda_{\min}(\pm 1 \text{ adj. matrix of } G_{p,C_p})$ $\geq \text{left edge of } \mu_{\mathsf{KM}(2^k)} - o(1),$

rescaled $\lambda_{\max}(\pm 1 \text{ adj. matrix of } G_{p,C_p})$ $\leq \text{right edge of } \mu_{\mathsf{KM}(2^k)} + o(1).$

Would imply, for any given constant k,

$$\omega(G_p) \leq k + \frac{\sqrt{2^k - 1}}{2^{k-1}} \sqrt{p} + o(\sqrt{p}) \approx 2^{-k/2} \sqrt{p}.$$

Already k = 3 would beat state of the art! And arbitrary k would show $\omega(G_p) = o(\sqrt{p})$, "denting" the \sqrt{p} barrier.

Edge behavior even for the classical free probability model only established using **fragile** "integrable" tools.

Edge behavior even for the classical free probability model only established using **fragile** "integrable" tools.

Theorem: [K '23] In Voiculescu's model, M = random submatrix of UDU^* with inclusion probability α ,

 $\lambda_{\max}(M) \rightarrow \text{right edge of } \mu_{\mathsf{KM}(1/\alpha)},$ $\lambda_{\min}(M) \rightarrow \text{left edge of } \mu_{\mathsf{KM}(1/\alpha)}.$

Edge behavior even for the classical free probability model only established using **fragile** "integrable" tools.

Theorem: [K '23] In Voiculescu's model, M = random submatrix of UDU^* with inclusion probability α ,

 $\lambda_{\max}(M) \rightarrow \text{right edge of } \mu_{\mathsf{KM}(1/\alpha)},$ $\lambda_{\min}(M) \rightarrow \text{left edge of } \mu_{\mathsf{KM}(1/\alpha)}.$

New proof combines **robust** trace method with recent tools [CM '17]: entry moments of U given by Weingarten function; tools give non-asymptotic bounds.

Edge behavior even for the classical free probability model only established using **fragile** "integrable" tools.

Theorem: [K '23] In Voiculescu's model, M = random submatrix of UDU^* with inclusion probability α ,

 $\lambda_{\max}(M) \rightarrow \text{right edge of } \mu_{\mathsf{KM}(1/\alpha)},$ $\lambda_{\min}(M) \rightarrow \text{left edge of } \mu_{\mathsf{KM}(1/\alpha)}.$

New proof combines **robust** trace method with recent tools [CM '17]: entry moments of U given by Weingarten function; tools give non-asymptotic bounds.

 \rightsquigarrow long but plausible road to the case of deterministic M.

1. If $SOS_4(G_p) \leq p^{1/2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?

- 1. If $SOS_4(G_p) \leq p^{1/2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
- 2. Higher degrees of SOS relaxation?

- 1. If $SOS_4(G_p) \leq p^{1/2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
- 2. Higher degrees of SOS relaxation?

3. Proof techniques to analyze **edge of spectrum** for matrix models with less and less randomness?

- 1. If $SOS_4(G_p) \leq p^{1/2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
- 2. Higher degrees of SOS relaxation?

3. Proof techniques to analyze **convex relaxations** for matrix models with less and less randomness?

- 1. If $SOS_4(G_p) \leq p^{1/2-\varepsilon}$, how to extract formal proofs from SOS numerics or graph matrix computations?
- 2. Higher degrees of SOS relaxation?

- 3. Proof techniques to analyze **convex relaxations** for matrix models with less and less randomness?
- 4. What other classical questions can be answered through **pseudorandomness** (phenomenon) leveraged via **convex relaxation** (proof technique)?

Thank you!