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Paley Graph

Fp := Z/pZ = finite field on p elements for p ≡ 1 mod 4.

Gp a graph on vertices Fp with i ∼ j iff j − i is a square
mod p (for some x ≠ 0, j − i = x2).
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Fp := Z/pZ = finite field on p elements for p ≡ 1 mod 4.

Gp a graph on vertices Fp with i ∼ j iff j − i is a square
mod p (for some x ≠ 0, j − i = x2).

Example: p = 5 � squares are {1,4 ≡ −1}.
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Paley Graph

Fp := Z/pZ = finite field on p elements for p ≡ 1 mod 4.

Gp a graph on vertices Fp with i ∼ j iff j − i is a square
mod p (for some x ≠ 0, j − i = x2).

Heuristic: Addition and multiplication are independent.

=⇒ adjacencies in Gp look independent.

=⇒ Gp is pseudorandom, behaving like Erdős-Rényi graph
with edge probability 1

2 (since deg(x) = p−1
2 ∼ 1

2p).

Example: As p →∞,

# triangles in Gp ∼ E
[
# triangles in ER

]
=
(
p
3

)(
1
2

)3

∼ 1
48
p3.
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Paley Graphs: The Clique Number

Question: How about extremal questions (large subgraphs)?

Example: ω(G) := largest clique in G.

Easy calculations =⇒

E[ω(ER)] ∼ 2 log2p

Same for ω(Gp)? Not quite...

ω(Gpi) ≥ logpi log log logpi [Graham, Ringrose ’90]

ω(Gp)
?∼ (logp)2 (numerics)

And, in any case, the best upper bounds we have are

ω(Gp) ≤
√
p (spectral/Hoffman/trivial bound)

ω(Gp) ≤
√
p/2+ 1 [Hanson, Petridis ’21]
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Big number theory question:

What proof technique can break the

“square root barrier” and prove

ω(Gp) = O(p1/2−ε) ?
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II. Sum-of-Squares Relaxations

(joint work with with Xifan Yu)

A degree 4 sum-of-squares lower bound for the clique number of the

Paley graph [arXiv:2211.02713]
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Sum-of-Squares (SOS) Relaxations
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Sum-of-Squares (SOS) Relaxations

For any graph G = (V , E), have polynomial (Boolean)
optimization formulation,

ω(G) = max

∑
i∈V
yi : y2

i −yi = 0, yiyj = 0 if {i, j} ∉ E


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2. Find some tractable constraints on X for feasible y:

• X � 0
• Xi,j = X(S) depends only on index set S in i, j
• X(∅) = 1, X(S) = 0 for all S not a clique in G

3. Optimize
∑
i∈V X({i}) over that enlarged set
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Degree 2 =: SOS2(G) (Case d = 1)

maximize
p∑
i=1

X({i}) subject to

X =



1 X({1}) X({2}) · · · X({p})
X({1}) X({1}) X({1,2}) · · · X({1, p})
X({2}) X({1,2}) X({2}) · · · X({2, p})

...
...

...
. . .

...

X({p}) X({1, p}) X({2, p}) · · · X({p})


� 0,

X({i, j}) = 0 whenever i 6∼G j.

This has been studied earlier as the Lovász function ϑ(G).

d ≥ 2 � SOS2d(G) ≥ω(G), tighter bounds in time pO(d).
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SOS Lower Bounds for Random Graphs

To study average-case difficulty of ω(·), people wanted to
understand how hard it is to compute ω(ER).

Theorem: [MW ’13]...[BHKKMP ’19] For any fixed d, as p →∞,

E [SOS2d(ER)] = Ω(p1/2−o(1)) � O(logp) = E[ω(ER)].

Question: Does this transfer to Paley graphs, showing that
low-degree SOS cannot break the

√p barrier?
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where

A∅(y) =

(
1 y{0}1

ᵀ

y{0}1 y{0}I + y{0,1}A(Ḡp)

)
encodes the vertices by y{0} and edges by y{0,1}, both
scalars, where A(Ḡp) is the adjacency matrix of the
complement graph Ḡp. Furthermore, A{0}(y) =

y{0} y{0,1}1
ᵀ

y{0,1}1


y{0}

0
. . .

0

+
∑
α,β∈ΩX

α,βy{α,β}


The matrix Xα,β encodes each orbit of φab acting on the
set of triangles without any edges: Xα,β

ij = 1 if (i, j) ∈
E for any φab acting on (0, α, β) and 0 otherwise.
(Note Xα,β

00 = 0 for all α, β ∈ Ω.)

Since α, β 6= 0, we can remove all elements in first
row and column of each Xα,β . Also {0, 1} ∈ E
for all feasible p, and therefore we can also remove
the the first row and column of A(Ḡp). This leads
to a p − 1 × p − 1 rather than p × p matrix in the
A∅(y) − A{0}(y) � 0 constraint. Lastly for purposes
of the constraint A{0}(y) � 0, we can remove the
rows and columns with edges (which are indexed by the
nonresidues) leading to a (p+ 1)/2× (p+ 1)/2 matrix.

V. NEW COMPUTATIONS

We replicated the L2(Gp) computations reported in [17],
[18] using Matlab/CVX for primes q = p (for p ≤ 809)
as well as extended them for all p < 1000. These
resulting new values are shown in Table I. Figure 1
shows that L2(Gp) ∼ p0.456 which is tighter than
HP (Gp) = (

√
2p− 1+1)/2, the upper bound on ω(Gp)

established in [20]. Since SOS4(Gp) ≤ L2(Gp), our
results provide new numerical evidence that the SOS4

relaxations are asymptotically growing with an order
smaller than square root of p.

VI. POTENTIAL EXTENSIONS

To efficiently compute the L2(Gp) values for p > 1000,
it would be desirable to decompose the AS(y) matrices
in terms of smaller matrices that could be used in the
PSD constraints; a result of this type was achieved in
[32] with respect to the Lovasz ϑ by decomposing the
moment matrix in terms of the so-called “zonal” matri-
ces. Also to reduce the number of optimization variables

p θ(Gp) L2(Gp) α(Gp)

821 28.653 18.673 12
829 28.792 18.105 11
853 29.206 18.909 13
857 29.275 18.429 13
877 29.614 19.711 13
881 29.682 18.689 11
929 30.48 19.292 13
937 30.61 19.248 11
941 30.676 19.34 11
953 30.871 19.199 11
977 31.257 19.737 13
997 31.575 20.058 13

TABLE I: The L2(Gp) values for 809 < p < 1000
determined in this paper, together with the values of α(Gp)
obtained from [34].
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Fig. 1: The L2(Gp) values for 809 < p < 1000 determined
in this paper, and the L2(Gp) and L3(Gp) values for p ≤
809 determined in [17], [18] are fitted to power models of the
form apb. The values of α(Gp) were obtained from [34] and
HP (Gp) = (

√
2p− 1 + 1)/2 represents the upper bound on

α(Gp) established in [20].

in the Lt(Gp) problems with t ≥ 3 it seems desirable to
explicitly determined the orbits of automorphisms acting
on stable or complete subgraphs with 4 vertices (K4’s)
and, if applicable, larger subgraphs (cf. Lemma 6.2.1 in
[32] and [13]). We leave these potential extensions for
future work.
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Our Results

Main message: Degree 4 SOS might improve on the
ω(Gp) Ü

√p bound, but subject to limitations.

Easy to show: SOS2(Gp) = p1/2.

Main theorem: [KY ’22] SOS4(Gp) = Ω(p1/3).

Remarks:

1. Derandomizes an early result on the random graph
case: [DM ’15] showed E[SOS4(ER)] = Ω̃(p1/3).

2. Compatible with numerics: maybe SOS4(Gp) ∼ p0.4.
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Ancillary Results I: Lower Bound of Ω(p0.4)?

We use a simple X, first used by [FK ’03], later by [MW ’13],
but ultimately found to be insufficient by [BHKKMP ’19]:

X(S) := f(|S|) · 1{S is a clique in G}.

Theorem: [Kelner ’15] For ER graphs, such proves only

E [SOS2d(ER)] = Ω̃(p1/(d+1)).

Theorem: [KY ’22] For Paley graphs, such proves only

SOS4(Gp) = Ω(p1/3),

i.e., our main result cannot be improved without a fancier
choice of X � probably significantly harder to analyze.
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Ancillary Results II: Breaking the
√p Barrier ?

Theoretical evidence: [BHKKMP ’19] proof depends on norm
bounds for graph matrices formed from the {±1}
adjacency matrix A.

Example: For a graph with sets of “left” and “right” vertices

we get a matrix

MH(G)(a,b),(c,d) =
∑

i≠j ∉ {a,b,c,d}
Aa,bAa,iAb,iAi,jAj,cAj,d.

17
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Ancillary Results II: Breaking the
√p Barrier ?

Theoretical evidence: [BHKKMP ’19] proof depends on norm
bounds for graph matrices formed from the {±1}
adjacency matrix A.

Theorem: [KY ’22] There are some H for which

‖MH(Gp)‖ � E
[
‖MH(ER)‖

]
,

i.e., the key technical tool does not derandomize in general
(but it does for small H to get our lower bound).

Basically, can build these by taking advantage of the
discrepancy between

A2
Gp = pI − 11>,

A2
ER = pI +

√
p · (random matrix).
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Our intuition: If SOS breaks the square

root barrier, it is thanks to a spectral

failure of pseudorandomness:

λ(Gp) 6≈ λ(ER)
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Proof Idea

Also boils down to bounding ‖MH(Gp)‖ for various H using
TrMH(G)k, but with different tools.

[AMP ’16], [BHKKMP ’19]: combinatorics from E[TrMH(ER)k]

[KY ’22] : character sums from TrMH(Gp)k

For χ : Fp → C the Legendre symbol character,

(AGp)i,j =
{
+1 if i ∼ j
−1 if i 6∼ j

}
= χ(i− j),

so polynomials in χ appear in entries of MH . Not many
good tools for handling TrMH(Gp)k character sums, but we
can use other case-by-case tricks to mostly avoid these.
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Character Sum Estimates

Typical, more classical, univariate example:

Theorem: (Weil) If f ∈ Fp[x] is not a multiple of a perfect
square, then ∣∣∣∣∣∣ ∑a∈Fp χ(f(a))

∣∣∣∣∣∣ ≤ deg f ·
√
p.

Describes square root cancellations: as though sum were of
weakly correlated ±1 signs.

But we need the much harder multivariate case:∣∣∣∣∣∣ ∑
a1,...,ak∈Fp

χ(f(a1, . . . , ak))

∣∣∣∣∣∣ ?
Ü
√
pk.
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III. Spectral Pseudorandomness

Generic MANOVA limit theorems for products of projections

[arXiv:2301.09543]

22



Next: How (spectrally) pseudorandom is

Gp, if at all? Can we use this to prove

clique number bounds?

23



The Localization Approach: Formulas [MMP ’19]

Gp is vertex transitive, so there is a maximum clique that
contains 0 ∈ Fp.

Defining Gp,{0} := induced subgraph on {i : i ∼ 0 in Gp},

ω(Gp) = 1+ω(Gp,{0}).

Why stop there? Gp is also edge transitive, so

ω(Gp) = 2+ω(Gp,{0,1}).

Why stop there? We don’t need transitivity; for any k,

ω(Gp) = k+ max
C a k-clique in Gp

ω(Gp,C).
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Local Graphs

25



The Localization Approach: Bounds [MMP ’19]

Now, can plug in our favorite clique number bounds and try
to control those. [MMP ’19] found empirically

ω(Gp) ≤ 1+ SOS2(Gp,{0}) ≈
√
p
2

(state of the art!)

Even simpler is spectral bound (Haemers’ variation on
Hoffman’s):

ω(Gp) ≤ k+ max
C a k-clique in Gp

f(Gp,C),

f (G) := |V(G)|
(

mindeg(G)2

maxdeg(G) · |λmin(G)|
− 1

)−1

.

Main point: Enough to understand spectrum of the Gp,C .
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Experiments: λ(Gp) (p ≈ 8000)
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Experiments: λ(Gp,{0})
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Experiments: λ(Gp,{0,1})
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Experiments: λ(Gp,{0,1,x})
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A Probabilist’s Old Friend

Definition: The Kesten-McKay law with parameter d ≥ 2 is

dµKM(d)(x) =
d
√

4(d− 1)− x2

2π(d2 − x2)
1
{
|x| ≤ 2

√
d− 1

}
dx

Also extends to 1 ≤ d < 2 by adding two atoms:

dµKM(d)(x) = (· · · ) +
2− d

2
δ−d(x)++

2− d
2
δd(x).

Observation: Up to rescaling and suitable shifting,
empirical spectral distribution of Gp,C looks like µKM(2|C|).

Let’s look...
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Experiments: λ(Gp)
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Experiments: λ(Gp,{0})
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Experiments: λ(Gp,{0,1})
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Experiments: λ(Gp,{0,1,x})
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Why Does Kesten-McKay Appear?

Related to its role in free probability:

Theorem: [Voiculescu ’90s] D ∈ RN×N diagonal with

Dii
iid∼ Unif({±1}), U ∼ Haar(U(N)), and M a principal

submatrix of UDU∗ with each row/column included with
probability α ∈ (0,1]. Then,

rescaled empirical spectral distribution of M ⇒ µKM(1/α).

P diagonal with Pii
iid∼ Ber(α)� M = PUDU∗P.

P and UDU∗ are asymptotically free =⇒ Theorem.

Idea: derandomize this model (in U ,D,P).
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Spectral Pseudorandomness for Local Graphs

Observe that
AGp,C = PGp,CAGpPGp,C .

Intuition: Gp,C is a pseudorandom induced subgraph, like
vertices were chosen independently with probability
α = 1/2|C| (|C| “independent” adjacency relations).

Gradual derandomization of asymptotic freeness result:

Reference Matrix Intuition

[V ’90s] PUDU∗P
[MMP ’19] PAGpP pseudorandom eigenspaces

[K ’23] PGp,CAGpPGp,C pseudorandom vertex set
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Precise Statement

Theorem: [K ’23] Conditional on a family of natural
Legendre symbol character sum estimates, for any
sequence Cp ⊂ V(Gp) of cliques with |Cp| = k,

rescaled e.s.d. of ±1 adjacency matrix of Gp,Cp ⇒ µKM(2k).

Can prove estimates for k = 1, and make progress for k = 2.

38



Pseudorandomness at the Edges

Conjecture: For any Cp ⊂ V(Gp) cliques with |Cp| = k,

rescaled λmin(±1 adj. matrix of Gp,Cp)
≥ left edge of µKM(2k) − o(1),

rescaled λmax(±1 adj. matrix of Gp,Cp)
≤ right edge of µKM(2k) + o(1).

Would imply, for any given constant k,

ω(Gp) ≤ k+
√

2k − 1
2k−1

√
p + o(

√
p) ≈ 2−k/2

√
p.

Already k = 3 would beat state of the art! And arbitrary k
would show ω(Gp) = o(

√p), “denting” the
√p barrier.
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Starting to Analyze the Edges

Edge behavior even for the classical free probability model
only established using fragile “integrable” tools.

Theorem: [K ’23] In Voiculescu’s model, M = random
submatrix of UDU∗ with inclusion probability α,

λmax(M) → right edge of µKM(1/α),
λmin(M) → left edge of µKM(1/α).

New proof combines robust trace method with recent tools
[CM ’17]: entry moments of U given by Weingarten function;
tools give non-asymptotic bounds.

� long but plausible road to the case of deterministic M.
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Open Questions

1. If SOS4(Gp) Ü p1/2−ε, how to extract formal proofs
from SOS numerics or graph matrix computations?
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Open Questions

1. If SOS4(Gp) Ü p1/2−ε, how to extract formal proofs
from SOS numerics or graph matrix computations?

2. Higher degrees of SOS relaxation?

3. Proof techniques to analyze convex relaxations for
matrix models with less and less randomness?

4. What other classical questions can be answered
through pseudorandomness (phenomenon) leveraged
via convex relaxation (proof technique)?
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Thank you!
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