
Optimality of Glauber dynamics for

general-purpose Ising model sampling

and free energy approximation

Dmitriy (Tim) Kunisky

Department of Computer Science, Yale University

SODA 2024
January 10, 2024



Problems from Statistical Physics

Ising-type models: “Energy” / “Hamiltonian” / “objective”
on {±1}n, x , x>Jx.

Objects of interest: Gibbs measure and partition function,

µJ(x) := 1
Z(J)

exp(x>Jx),

Z(J) :=
∑

x∈{±1}n
exp(x>Jx).

Combinatorial heuristic: J = η · (Laplacian of graph), then

x>Jx = 4η · #{ edges cut by x },
µηJ ≈ uniform measure on cuts of some size,

Z(ηJ) ≈ C · #{ cuts of some size }.
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Glauber Dynamics

Simple Markov Chain Monte Carlo algorithm for sampling
from µJ :

0. Initialize x = x(0).
1. Choose i ∼ Unif([n]).

2. Resample xi ∈ {±1} according to conditional distribution.

3. Go to Step 1.
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0. Initialize x = x(0).
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Glauber Dynamics

Simple Markov Chain Monte Carlo algorithm for sampling
from µJ :

0. Initialize x = x(0).
1. Choose i ∼ Unif([n]).

2. Resample xi ∈ {±1} according to conditional distribution.

3. Go to Step 1.

x(k+1) ←
[
+1 −1 +1 +1 ±1 −1 −1 +1

]

Stationary distribution = µJ � always works eventually.

Question: For what J can we guarantee it mixes rapidly?
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Conditions for Fast Mixing

Classical Dobrushin uniqueness condition: enough for∑n
j=1 |Jij| < 1 for all i ∈ [n].

Works for, e.g., J = η · (Laplacian of sparse graph).

Does not work for dense J, e.g., i.i.d. Gaussian entries
Jij ∼N (0, σ

2

n ). (“Sherrington-Kirkpatrick spin glass model”)

Several recent works making progress on this case. The
result we will focus on:

Theorem: [Eldan, Koehler, Zeitouni ’20] Output of Glauber
dynamics is close to µ after O(n2/δ) steps so long as

width(J) := λmax(J)− λmin(J) ≤
1
2
− δ.
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Is “width(J) < 1
2” Optimal?

Theorem: [Griffiths, Weng, Langer ’66] Glauber dynamics does
not mix rapidly when J = (1

2 + ε)
1
n11>. (“Curie-Weiss model”)

� width condition cannot be improved to 1
2 + ε.

What about other efficient samplers, more tailored to J?

Theorem: [El Alaoui, Montanari, Sellke ’22; Celentano ’22] For the
Gaussian Sherrington-Kirkpatrick model Jij ∼N (0, σ

2

n ), a
different efficient sampler (“algorithmic stochastic localization”)

succeeds whenever width(J) ≤ 2− δ.

Question: Can we remove the model dependence from this
result? That is, does there exist a general-purpose sampler
that improves on the width condition?
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Lower Bounds

Theorem: [Sly, Sun ’12; Galanis, S̆tefankovĭc, Vigoda ’16] If the
width condition can be improved to 1+ ε, then NP = RP
(implicitly, via case of Laplacians of regular graphs).

Conjecture: [Bandeira, K., Wein ’20] It is hard to distinguish:

Q : A uniformly random γn-dimensional subspace ⊂ Rn.

P : A random subspace biased towards x? ∼ Unif({±1}n).

Theorem: (this paper) If the width condition can be
improved to 1

2 + ε, then this Conjecture is false.

Glauber dynamics is an optimal (in width condition)
general-purpose sampler.
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width condition can be improved to 1+ ε, then NP = RP
(implicitly, via case of Laplacians of regular graphs).

Conjecture: [Bandeira, K., Wein ’20] It is hard to distinguish:

Q : A uniformly random γn-dimensional subspace ⊂ Rn.

P : A random subspace biased towards x? ∼ Unif({±1}n).

Theorem: (this paper) If the width condition can be
improved to 1

2 + ε, then this Conjecture is false.

Glauber dynamics is an optimal (in width condition)
general-purpose sampler.

6



Evidence for Conjecture: Gaussian Model

x? close to V ⊂ Rn ↔ x? almost orthogonal to V⊥.

We will model V⊥ := span(y1, . . . ,yαn), α = 1− γ:

Q : y1, . . . ,yαn ∼N (0, In).
P : y1, . . . ,yαn ∼N (0, In − β

nx
?x?>) for x? ∼ Unif({±1}n).

Variant of the classical spiked matrix model: [Johnstone ’01]

Q : y1, . . . ,yαn ∼N (0, In).
P′ : y1, . . . ,yαn ∼N (0, In+ β

nx
?x?>) for x? ∼ Unif({±1}n).

Conjecture: It is hard to distinguish in either case, for any
choice of α,β ∈ (0,1).
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Evidence for Conjecture: BBP Transition

Natural algorithm: threshold extreme eigenvalue of sample
covariance, λmin|max( 1

αn
∑αn
i=1yiy

>
i ).
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i=1yiy

>
i ).

Theorem: [Baik, Ben Arous, Péché ’05], [Baik, Silverstein ’06] In
either case, this works a αβ2 > 1.
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Evidence for Conjecture: BBP Transition

Natural algorithm: threshold extreme eigenvalue of sample
covariance, λmin|max( 1

αn
∑αn
i=1yiy

>
i ).

Theorem: [Baik, Ben Arous, Péché ’05], [Baik, Silverstein ’06] In
either case, this works a αβ2 > 1.

Theorem: [Bandeira, K., Wein ’20] More general algorithms
from low-degree polynomials work a αβ2 > 1.
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Proof Sketch I: Relate to Partition Function

Suppose for the sake of contradiction an efficient sampler
works for all width(J) < 1

2 + ε.

Reduce “counting to sampling,” approximating Z(J) by
fixing 0 < η1 < · · · < ηk < 1 and annealing:

Z(J) = Z(0) · Z(η1J)
Z(0)

· Z(η2J)
Z(η1J)

· · · Z(J)
Z(ηkJ)

,

Z(0) = 2n,
Z(ηi+1J)
Z(ηiJ)

= 1
Z(ηiJ)

∑
x
exp(x>ηiJx) exp(x>(ηi+1 − ηi)Jx)

= E
x∼µηiJ

exp(x>(ηi+1 − ηi)Jx)

� can estimate exp(−δn)Z(J) ≤ Ẑ(J) ≤ exp(δn)Z(J).
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Proof Sketch II: Design Hypothesis Test

To solve hypothesis testing problem for PV projection to
subspace, try thresholding for large η

Z(ηPV ) =
∑

x∈{±1}n
exp(x>ηPVx) =

∑
x∈{±1}n

exp(η‖PVx‖2).

Idea: For large enough η,

1
η
logZ(ηPV ) ≈ max

x∈{±1}n
‖PVx‖2,

which distinguishes V ∼ Q from V ∼ P.

Question: How large does η need to be to separate these?
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Proof Sketch III: Planted Calculations

V ∼ P : with x? close to V , lower bound

‖PVx‖2 ≥ 〈x,x
?〉2
n

with which we can reduce to combinatorics,

Z(ηPV ) Ý
∑

x∈{±1}n
exp

(
η
〈x,x?〉2
n

)

=
n∑
r=0

(
n
r

)
exp

(
η
(2r −n)2

n

)

≈ exp

(
n · max

ρ= rn∈[0,1]

{
H(ρ)+ η(2ρ − 1)2

})

V ∼ P ⇒ Z(ηPV ) Ý exp(n · fP(η))
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Proof Sketch IV: Null Calculations

V ∼ Q : Use rotational invariance and Jensen’s inequality,

E
V
logZ(ηPV ) = E

V
log

∑
x∈{±1}n

exp(ηx>PVx)

= K + E
V

E
Q orth.

log E
x∈{±1}n

exp(η‖x>Q>PVQx‖2)

≤ K + E
V
log E

x∈Sn−1(
√
n)
exp(ηx>PVx)

= K + log E
x∈Sn−1(

√
n)
exp(η(x2

1 + · · · + x2
γn))

= “spherical integral” with clean asymptotics

V ∼ Q ⇒ Z(ηPV ) Ü exp(n · fQ(η))
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Proof Sketch V: Finding a Threshold

V ∼ P ⇒ Z(ηPV ) Ý exp(n · fP(η)) (1)

V ∼ Q ⇒ Z(ηPV ) Ü exp(n · fQ(η)) (2)

calculus � fP(η) > fQ(η) for all η >
1
2

(3)

sampler for width(J) <
1
2
+ ε

↓

partition function approximator Ẑ for width(J) <
1
2
+ ε

↓

hypothesis test by V , Ẑ
((

1
2
+ ε

2

)
PV
)
≈ Z

((
1
2
+ ε

2

)
PV
)
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Next Steps

• Stronger evidence (e.g., concluding NP = RP instead of
refuting Conjecture)

• Potts models (cut � coloring, vector � subspace)

• Other hypothesis testing problems for which a partition
function is a good (and convenient to analyze) statistic
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Thank you!
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