Optimality of Glauber dynamics for general-purpose Ising model sampling and free energy approximation

Dmitriy (Tim) Kunisky

Department of Computer Science, Yale University

SODA 2024 January 10, 2024

Problems from Statistical Physics

Ising-type models: "Energy" / "Hamiltonian" / "objective" on $\{\pm 1\}^n$, $\mathbf{x} \mapsto \mathbf{x}^\top J \mathbf{x}$.

Problems from Statistical Physics

Ising-type models: "Energy" / "Hamiltonian" / "objective" on $\{\pm 1\}^n$, $\mathbf{x} \mapsto \mathbf{x}^\top J \mathbf{x}$.

Objects of interest: Gibbs measure and partition function,

$$\mu_{J}(\boldsymbol{x}) := \frac{1}{Z(\boldsymbol{J})} \exp(\boldsymbol{x}^{\top} \boldsymbol{J} \boldsymbol{x}),$$
$$Z(\boldsymbol{J}) := \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{x}^{\top} \boldsymbol{J} \boldsymbol{x}).$$

Problems from Statistical Physics

Ising-type models: "Energy" / "Hamiltonian" / "objective" on $\{\pm 1\}^n$, $\mathbf{x} \mapsto \mathbf{x}^\top J \mathbf{x}$.

Objects of interest: Gibbs measure and partition function,

$$u_{J}(\boldsymbol{x}) := \frac{1}{Z(J)} \exp(\boldsymbol{x}^{\top} \boldsymbol{J} \boldsymbol{x}),$$
$$Z(\boldsymbol{J}) := \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{x}^{\top} \boldsymbol{J} \boldsymbol{x}).$$

Combinatorial heuristic: $J = \eta \cdot (\text{Laplacian of graph})$, then

 $\boldsymbol{x}^{\top} \boldsymbol{J} \boldsymbol{x} = 4\boldsymbol{\eta} \cdot \# \{ \text{ edges cut by } \boldsymbol{x} \},$ $\mu_{\eta J} \approx \text{ uniform measure on cuts of some size,}$ $Z(\eta J) \approx C \cdot \# \{ \text{ cuts of some size} \}.$

Simple Markov Chain Monte Carlo algorithm for sampling from μ_J :

- 0. Initialize $\boldsymbol{x} = \boldsymbol{x}^{(0)}$.
- 1. Choose $i \sim \text{Unif}([n])$.
- 2. Resample $x_i \in \{\pm 1\}$ according to conditional distribution.
- 3. Go to Step 1.

Simple Markov Chain Monte Carlo algorithm for sampling from μ_J :

- 0. Initialize $x = x^{(0)}$.
- 1. Choose $i \sim \text{Unif}([n])$.
- 2. Resample $x_i \in \{\pm 1\}$ according to conditional distribution.

3. Go to Step 1.

$$\boldsymbol{x}^{(k)} = \begin{bmatrix} +1 & -1 & +1 & +1 & -1 & -1 & +1 \end{bmatrix}$$

Simple Markov Chain Monte Carlo algorithm for sampling from μ_J :

- 0. Initialize $x = x^{(0)}$.
- 1. Choose $i \sim \text{Unif}([n])$.
- 2. Resample $x_i \in \{\pm 1\}$ according to conditional distribution.

3. Go to Step 1.

$$\boldsymbol{x}^{(k+1)} \leftarrow \begin{bmatrix} +1 & -1 & +1 & +1 & \pm 1 & -1 & -1 & +1 \end{bmatrix}$$

Simple Markov Chain Monte Carlo algorithm for sampling from μ_J :

- 0. Initialize $x = x^{(0)}$.
- 1. Choose $i \sim \text{Unif}([n])$.
- 2. Resample $x_i \in \{\pm 1\}$ according to conditional distribution.
- 3. Go to Step 1.

$$\boldsymbol{x}^{(k+1)} \leftarrow \begin{bmatrix} +1 & -1 & +1 & +1 & \pm 1 & -1 & -1 & +1 \end{bmatrix}$$

Stationary distribution = $\mu_J \iff$ always works eventually.

Question: For what *J* can we guarantee it mixes rapidly?

Conditions for Fast Mixing

Classical **Dobrushin uniqueness condition**: enough for $\sum_{j=1}^{n} |J_{ij}| < 1$ for all $i \in [n]$.

Works for, e.g., $J = \eta \cdot (\text{Laplacian of sparse graph})$.

Conditions for Fast Mixing

Classical **Dobrushin uniqueness condition**: enough for $\sum_{j=1}^{n} |J_{ij}| < 1$ for all $i \in [n]$.

Works for, e.g., $J = \eta \cdot (\text{Laplacian of sparse graph})$.

Does not work for dense J, e.g., i.i.d. Gaussian entries $J_{ij} \sim \mathcal{N}(0, \frac{\sigma^2}{n})$. ("Sherrington-Kirkpatrick spin glass model")

Conditions for Fast Mixing

Classical **Dobrushin uniqueness condition**: enough for $\sum_{j=1}^{n} |J_{ij}| < 1$ for all $i \in [n]$.

Works for, e.g., $J = \eta \cdot (\text{Laplacian of sparse graph})$.

Does not work for dense J, e.g., i.i.d. Gaussian entries $J_{ij} \sim \mathcal{N}(0, \frac{\sigma^2}{n})$. ("Sherrington-Kirkpatrick spin glass model")

Several recent works making progress on this case. The result we will focus on:

Theorem: [Eldan, Koehler, Zeitouni '20] Output of Glauber dynamics is close to μ after $O(n^2/\delta)$ steps so long as

width(
$$\boldsymbol{J}$$
) := $\lambda_{\max}(\boldsymbol{J}) - \lambda_{\min}(\boldsymbol{J}) \leq \frac{1}{2} - \delta$.

Is "width(\boldsymbol{J}) < $\frac{1}{2}$ " Optimal?

Theorem: [Griffiths, Weng, Langer '66] Glauber dynamics does not mix rapidly when $J = (\frac{1}{2} + \varepsilon) \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$. ("Curie-Weiss model")

 \rightsquigarrow width condition cannot be improved to $\frac{1}{2} + \epsilon$.

Is "width(\boldsymbol{J}) < $\frac{1}{2}$ " Optimal?

Theorem: [Griffiths, Weng, Langer '66] Glauber dynamics does not mix rapidly when $J = (\frac{1}{2} + \varepsilon) \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$. ("Curie-Weiss model")

 \rightsquigarrow width condition cannot be improved to $\frac{1}{2} + \varepsilon$.

What about other efficient samplers, more tailored to *J*?

Theorem: [El Alaoui, Montanari, Sellke '22; Celentano '22] For the Gaussian Sherrington-Kirkpatrick model $J_{ij} \sim \mathcal{N}(0, \frac{\sigma^2}{n})$, a different efficient sampler ("algorithmic stochastic localization") succeeds whenever width(J) $\leq 2 - \delta$.

Is "width(\boldsymbol{J}) < $\frac{1}{2}$ " Optimal?

Theorem: [Griffiths, Weng, Langer '66] Glauber dynamics does not mix rapidly when $J = (\frac{1}{2} + \varepsilon)\frac{1}{n}\mathbf{1}\mathbf{1}^{\mathsf{T}}$. ("Curie-Weiss model")

 \rightsquigarrow width condition cannot be improved to $\frac{1}{2} + \epsilon$.

What about other efficient samplers, more tailored to *J*?

Theorem: [El Alaoui, Montanari, Sellke '22; Celentano '22] For the Gaussian Sherrington-Kirkpatrick model $J_{ij} \sim \mathcal{N}(0, \frac{\sigma^2}{n})$, a different efficient sampler ("algorithmic stochastic localization") succeeds whenever width(J) $\leq 2 - \delta$.

Question: Can we remove the model dependence from this result? That is, does there exist a **general-purpose sampler** that improves on the width condition?

Lower Bounds

Theorem: [Sly, Sun '12; Galanis, Štefankovič, Vigoda '16] If the width condition can be improved to $1 + \varepsilon$, then NP = RP (implicitly, via case of Laplacians of regular graphs).

Lower Bounds

Theorem: [Sly, Sun '12; Galanis, Štefankovič, Vigoda '16] If the width condition can be improved to $1 + \varepsilon$, then NP = RP (implicitly, via case of Laplacians of regular graphs).

Conjecture: [Bandeira, K., Wein '20] It is hard to distinguish:

- \mathbb{Q} : A uniformly random γn -dimensional subspace $\subset \mathbb{R}^n$.
- **P**: A random subspace biased towards $\boldsymbol{x}^* \sim \text{Unif}(\{\pm 1\}^n)$.

Theorem: (this paper) If the width condition can be improved to $\frac{1}{2} + \varepsilon$, then this Conjecture is false.

Glauber dynamics is an optimal (in width condition) general-purpose sampler.

Evidence for Conjecture: Gaussian Model

 \boldsymbol{x}^{\star} close to $V \subset \mathbb{R}^n \quad \leftrightarrow \quad \boldsymbol{x}^{\star}$ almost orthogonal to V^{\perp} .

Evidence for Conjecture: Gaussian Model

 \boldsymbol{x}^{\star} close to $V \subset \mathbb{R}^n \iff \boldsymbol{x}^{\star}$ almost orthogonal to V^{\perp} .

We will model $V^{\perp} := \operatorname{span}(\boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n}), \, \alpha = 1 - \gamma$:

 $\mathbb{Q}: \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n).$ $\mathbb{P}: \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n - \frac{\beta}{n} \boldsymbol{x}^* \boldsymbol{x}^{*^{\top}}) \text{ for } \boldsymbol{x}^* \sim \text{Unif}(\{\pm 1\}^n).$

Evidence for Conjecture: Gaussian Model

 \boldsymbol{x}^{\star} close to $V \subset \mathbb{R}^n \iff \boldsymbol{x}^{\star}$ almost orthogonal to V^{\perp} .

We will model $V^{\perp} := \operatorname{span}(\boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n}), \, \alpha = 1 - \gamma$:

$$\mathbb{Q}: \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n).$$

$$\mathbb{P}: \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n - \frac{\beta}{n} \boldsymbol{x}^* \boldsymbol{x}^{*^{\top}}) \text{ for } \boldsymbol{x}^* \sim \mathsf{Unif}(\{\pm 1\}^n).$$

Variant of the classical **spiked matrix model**: [Johnstone '01] $\mathbb{Q}: \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n).$ $\mathbb{P}': \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\alpha n} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n + \frac{\beta}{n} \boldsymbol{x}^* \boldsymbol{x}^{*^{\top}})$ for $\boldsymbol{x}^* \sim \text{Unif}(\{\pm 1\}^n).$

Conjecture: It is hard to distinguish in either case, for any choice of α , $\beta \in (0, 1)$.

Natural algorithm: threshold extreme eigenvalue of sample covariance, $\lambda_{\min|\max}(\frac{1}{\alpha n}\sum_{i=1}^{\alpha n} \boldsymbol{y}_i \boldsymbol{y}_i^{\mathsf{T}})$.

Natural algorithm: threshold extreme eigenvalue of sample covariance, $\lambda_{\min|\max}(\frac{1}{\alpha n}\sum_{i=1}^{\alpha n} \boldsymbol{y}_i \boldsymbol{y}_i^{\mathsf{T}})$.

Natural algorithm: threshold extreme eigenvalue of sample covariance, $\lambda_{\min|\max}(\frac{1}{\alpha n}\sum_{i=1}^{\alpha n} \boldsymbol{y}_i \boldsymbol{y}_i^{\mathsf{T}})$.

Theorem: [Baik, Ben Arous, Péché '05], [Baik, Silverstein '06] In either case, this works $\Leftrightarrow \alpha\beta^2 > 1$.

Natural algorithm: threshold extreme eigenvalue of sample covariance, $\lambda_{\min|\max}(\frac{1}{\alpha n}\sum_{i=1}^{\alpha n} \boldsymbol{y}_i \boldsymbol{y}_i^{\mathsf{T}})$.

Theorem: [Baik, Ben Arous, Péché '05], [Baik, Silverstein '06] In either case, this works $\Leftrightarrow \alpha\beta^2 > 1$.

Theorem: [Bandeira, K., Wein '20] More general algorithms from **low-degree polynomials** work $\Leftrightarrow \alpha\beta^2 > 1$.

Proof Sketch I: Relate to Partition Function

Suppose for the sake of contradiction an efficient sampler works for all width(J) < $\frac{1}{2} + \varepsilon$.

Proof Sketch I: Relate to Partition Function

Suppose for the sake of contradiction an efficient sampler works for all width(J) < $\frac{1}{2} + \varepsilon$.

Reduce "counting to sampling," approximating Z(J) by fixing $0 < \eta_1 < \cdots < \eta_k < 1$ and **annealing**:

$$Z(\boldsymbol{J}) = Z(\boldsymbol{0}) \cdot \frac{Z(\eta_1 \boldsymbol{J})}{Z(\boldsymbol{0})} \cdot \frac{Z(\eta_2 \boldsymbol{J})}{Z(\eta_1 \boldsymbol{J})} \cdots \frac{Z(\boldsymbol{J})}{Z(\eta_k \boldsymbol{J})},$$

$$Z(\boldsymbol{0}) = 2^n,$$

$$\frac{Z(\eta_{i+1} \boldsymbol{J})}{Z(\eta_i \boldsymbol{J})} = \frac{1}{Z(\eta_i \boldsymbol{J})} \sum_{\boldsymbol{x}} \exp(\boldsymbol{x}^\top \eta_i \boldsymbol{J} \boldsymbol{x}) \exp(\boldsymbol{x}^\top (\eta_{i+1} - \eta_i) \boldsymbol{J} \boldsymbol{x})$$

$$= \sum_{\boldsymbol{x} \sim \mu_{\eta_i \boldsymbol{J}}} \exp(\boldsymbol{x}^\top (\eta_{i+1} - \eta_i) \boldsymbol{J} \boldsymbol{x})$$

Proof Sketch I: Relate to Partition Function

Suppose for the sake of contradiction an efficient sampler works for all width(J) < $\frac{1}{2} + \varepsilon$.

Reduce "counting to sampling," approximating Z(J) by fixing $0 < \eta_1 < \cdots < \eta_k < 1$ and **annealing**:

$$Z(\boldsymbol{J}) = Z(\boldsymbol{0}) \cdot \frac{Z(\eta_1 \boldsymbol{J})}{Z(\boldsymbol{0})} \cdot \frac{Z(\eta_2 \boldsymbol{J})}{Z(\eta_1 \boldsymbol{J})} \cdots \frac{Z(\boldsymbol{J})}{Z(\eta_k \boldsymbol{J})},$$

$$Z(\boldsymbol{0}) = 2^n,$$

$$\frac{Z(\eta_{i+1} \boldsymbol{J})}{Z(\eta_i \boldsymbol{J})} = \frac{1}{Z(\eta_i \boldsymbol{J})} \sum_{\boldsymbol{x}} \exp(\boldsymbol{x}^\top \eta_i \boldsymbol{J} \boldsymbol{x}) \exp(\boldsymbol{x}^\top (\eta_{i+1} - \eta_i) \boldsymbol{J} \boldsymbol{x})$$

$$= \sum_{\boldsymbol{x} \sim \mu_{\eta_i \boldsymbol{J}}} \exp(\boldsymbol{x}^\top (\eta_{i+1} - \eta_i) \boldsymbol{J} \boldsymbol{x})$$

→ can estimate $\exp(-\delta n)Z(J) \le \hat{Z}(J) \le \exp(\delta n)Z(J)$.

Proof Sketch II: Design Hypothesis Test

To solve hypothesis testing problem for P_V projection to subspace, try thresholding for large η

$$Z(\boldsymbol{\eta}\boldsymbol{P}_{V}) = \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{x}^{\top} \boldsymbol{\eta} \boldsymbol{P}_{V} \boldsymbol{x}) = \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{\eta} \| \boldsymbol{P}_{V} \boldsymbol{x} \|^{2}).$$

Proof Sketch II: Design Hypothesis Test

To solve hypothesis testing problem for P_V projection to subspace, try thresholding for large η

$$Z(\boldsymbol{\eta}\boldsymbol{P}_{V}) = \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{x}^{\top} \boldsymbol{\eta} \boldsymbol{P}_{V} \boldsymbol{x}) = \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{\eta} \| \boldsymbol{P}_{V} \boldsymbol{x} \|^{2}).$$

Idea: For large enough η ,

$$\frac{1}{\eta} \log Z(\eta \boldsymbol{P}_V) \approx \max_{\boldsymbol{x} \in \{\pm 1\}^n} \| \boldsymbol{P}_V \boldsymbol{x} \|^2,$$

which distinguishes $V \sim \mathbb{Q}$ from $V \sim \mathbb{P}$.

Question: How large does η need to be to separate these?

Proof Sketch III: Planted Calculations

 $V \sim \mathbb{P}$: with \boldsymbol{x}^{\star} close to *V*, lower bound

$$\|\boldsymbol{P}_{V}\boldsymbol{x}\|^{2} \geq \frac{\langle \boldsymbol{x}, \boldsymbol{x}^{\star} \rangle^{2}}{n}$$

Proof Sketch III: Planted Calculations

 $V \sim \mathbb{P}$: with \boldsymbol{x}^{\star} close to V, lower bound

$$\|\boldsymbol{P}_{V}\boldsymbol{x}\|^{2} \geq \frac{\langle \boldsymbol{x}, \boldsymbol{x}^{\star} \rangle^{2}}{n}$$

with which we can reduce to combinatorics,

$$Z(\eta P_V) \gtrsim \sum_{\boldsymbol{x} \in \{\pm 1\}^n} \exp\left(\eta \,\frac{\langle \boldsymbol{x}, \boldsymbol{x}^* \rangle^2}{n}\right)$$

= $\sum_{r=0}^n \binom{n}{r} \exp\left(\eta \frac{(2r-n)^2}{n}\right)$
 $\approx \exp\left(n \cdot \max_{\rho = \frac{r}{n} \in [0,1]} \left\{H(\rho) + \eta (2\rho - 1)^2\right\}\right)$

 $V \sim \mathbb{P} \Rightarrow Z(\eta \mathbf{P}_V) \gtrsim \exp(n \cdot f_{\mathbb{P}}(\eta))$

 $V\sim\mathbb{Q}$: Use rotational invariance and Jensen's inequality,

$$\mathbb{E}_{V} \log Z(\boldsymbol{\eta} \boldsymbol{P}_{V}) = \mathbb{E}_{V} \log \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{\eta} \boldsymbol{x}^{\top} \boldsymbol{P}_{V} \boldsymbol{x})$$
$$= K + \mathbb{E}_{V} \mathbb{E}_{Q \text{ orth.}} \log \mathbb{E}_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{\eta} \| \boldsymbol{x}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{P}_{V} \boldsymbol{Q} \boldsymbol{x} \|^{2})$$

 $V\sim\mathbb{Q}$: Use rotational invariance and Jensen's inequality,

$$\mathbb{E}_{V} \log Z(\boldsymbol{\eta} \boldsymbol{P}_{V}) = \mathbb{E}_{V} \log \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{\eta} \boldsymbol{x}^{\top} \boldsymbol{P}_{V} \boldsymbol{x})$$

$$= K + \mathbb{E}_{V} \mathbb{E}_{Q \text{ orth.}} \log \mathbb{E}_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\boldsymbol{\eta} \| \boldsymbol{x}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{P}_{V} \boldsymbol{Q} \boldsymbol{x} \|^{2})$$

$$\leq K + \mathbb{E}_{V} \log \mathbb{E}_{\boldsymbol{x} \in \mathbb{S}^{n-1}(\sqrt{n})} \exp(\boldsymbol{\eta} \boldsymbol{x}^{\top} \boldsymbol{P}_{V} \boldsymbol{x})$$

 $V\sim\mathbb{Q}$: Use rotational invariance and Jensen's inequality,

$$\mathbb{E}_{V} \log Z(\eta \boldsymbol{P}_{V}) = \mathbb{E}_{V} \log \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\eta \boldsymbol{x}^{\top} \boldsymbol{P}_{V} \boldsymbol{x})$$

$$= K + \mathbb{E}_{V} \mathbb{E}_{Q \text{ orth.}} \log_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\eta \| \boldsymbol{x}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{P}_{V} \boldsymbol{Q} \boldsymbol{x} \|^{2})$$

$$\leq K + \mathbb{E}_{V} \log \mathbb{E}_{\boldsymbol{x} \in \mathbb{S}^{n-1}(\sqrt{n})} \exp(\eta \boldsymbol{x}^{\top} \boldsymbol{P}_{V} \boldsymbol{x})$$

$$= K + \log \mathbb{E}_{\boldsymbol{x} \in \mathbb{S}^{n-1}(\sqrt{n})} \exp(\eta (x_{1}^{2} + \dots + x_{\gamma n}^{2}))$$

$$= \text{"spherical integral" with clean asymptotics}$$

 $V\sim\mathbb{Q}$: Use rotational invariance and Jensen's inequality,

$$\mathbb{E}_{V} \log Z(\eta P_{V}) = \mathbb{E}_{V} \log \sum_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\eta \boldsymbol{x}^{\top} P_{V} \boldsymbol{x})$$

$$= K + \mathbb{E}_{V} \mathbb{E}_{Q \text{ orth.}} \log \mathbb{E}_{\boldsymbol{x} \in \{\pm 1\}^{n}} \exp(\eta \|\boldsymbol{x}^{\top} Q^{\top} P_{V} Q \boldsymbol{x}\|^{2})$$

$$\leq K + \mathbb{E}_{V} \log \mathbb{E}_{\boldsymbol{x} \in \mathbb{S}^{n-1}(\sqrt{n})} \exp(\eta \boldsymbol{x}^{\top} P_{V} \boldsymbol{x})$$

$$= K + \log \mathbb{E}_{\boldsymbol{x} \in \mathbb{S}^{n-1}(\sqrt{n})} \exp(\eta (x_{1}^{2} + \dots + x_{\gamma n}^{2}))$$

$$= \text{"spherical integral" with clean asymptotics}$$

 $V \sim \mathbb{Q} \Rightarrow Z(\eta \mathbf{P}_V) \leq \exp(n \cdot f_{\mathbb{Q}}(\eta))$

Proof Sketch V: Finding a Threshold

$$V \sim \mathbb{P} \Rightarrow Z(\eta P_V) \gtrsim \exp(n \cdot f_{\mathbb{P}}(\eta))$$
(1)

$$V \sim \mathbb{Q} \Rightarrow Z(\eta P_V) \lesssim \exp(n \cdot f_{\mathbb{Q}}(\eta))$$
(2)
calculus $\rightsquigarrow f_{\mathbb{P}}(\eta) > f_{\mathbb{Q}}(\eta)$ for all $\eta > \frac{1}{2}$ (3)

Proof Sketch V: Finding a Threshold

$$V \sim \mathbb{P} \Rightarrow Z(\eta P_V) \gtrsim \exp(n \cdot f_{\mathbb{P}}(\eta))$$
(1)

$$V \sim \mathbb{Q} \Rightarrow Z(\eta P_V) \lesssim \exp(n \cdot f_{\mathbb{Q}}(\eta))$$
(2)
calculus $\rightsquigarrow f_{\mathbb{P}}(\eta) > f_{\mathbb{Q}}(\eta)$ for all $\eta > \frac{1}{2}$ (3)

sampler for width(
$$J$$
) $< \frac{1}{2} + \varepsilon$
 \downarrow
partition function approximator \hat{Z} for width(J) $< \frac{1}{2} + \varepsilon$
 \downarrow
hypothesis test by $V \mapsto \hat{Z}\left(\left(\frac{1}{2} + \frac{\varepsilon}{2}\right)P_V\right) \approx Z\left(\left(\frac{1}{2} + \frac{\varepsilon}{2}\right)P_V\right)$

Next Steps

- Stronger evidence (e.g., concluding NP = RP instead of refuting Conjecture)
- Potts models (cut ---- coloring, vector ---- subspace)
- Other hypothesis testing problems for which a partition function is a good (and convenient to analyze) statistic

Thank you!