Spectral limit theorems for submatrices and products of projections

Tim Kunisky

Yale University

MIT Probability Seminar April 24, 2023

I. Introduction

Eigenvalues Under Compression

 $A, B \in \mathbb{C}^{N \times N}$ orthogonal projections of **linear rank**:

$$\frac{1}{N}\operatorname{Tr}(\boldsymbol{A}) \approx \boldsymbol{\alpha} \in (0, 1),$$
$$\frac{1}{N}\operatorname{Tr}(\boldsymbol{B}) \approx \boldsymbol{\beta} \in (0, 1).$$

Eigenvalues Under Compression

 $A, B \in \mathbb{C}^{N \times N}$ orthogonal projections of **linear rank**:

$$\frac{1}{N}\operatorname{Tr}(\boldsymbol{A}) \approx \alpha \in (0, 1),$$
$$\frac{1}{N}\operatorname{Tr}(\boldsymbol{B}) \approx \beta \in (0, 1).$$

This specifies the **empirical spectral distributions**:

e.s.d. of
$$\mathbf{A} \approx (1 - \alpha)\delta_0 + \alpha\delta_1 = \text{Ber}(\alpha)$$
,
e.s.d. of $\mathbf{B} \approx (1 - \beta)\delta_0 + \beta\delta_1 = \text{Ber}(\beta)$.

Eigenvalues Under Compression

 $A, B \in \mathbb{C}^{N \times N}$ orthogonal projections of **linear rank**:

$$\frac{1}{N}\operatorname{Tr}(\boldsymbol{A}) \approx \alpha \in (0, 1),$$
$$\frac{1}{N}\operatorname{Tr}(\boldsymbol{B}) \approx \beta \in (0, 1).$$

This specifies the **empirical spectral distributions**:

e.s.d. of
$$\mathbf{A} \approx (1 - \alpha)\delta_0 + \alpha\delta_1 = \text{Ber}(\alpha)$$
,
e.s.d. of $\mathbf{B} \approx (1 - \beta)\delta_0 + \beta\delta_1 = \text{Ber}(\beta)$.

How does **compressing** *B* by *A* change the eigenvalues?

e.s.d. of $ABA \approx ?$

Geometric Interpretation

Say A projects to $U \subset \mathbb{C}^N$ and B projects to $V \subset \mathbb{C}^N$.

Geometric Interpretation

Say *A* projects to $U \subset \mathbb{C}^N$ and *B* projects to $V \subset \mathbb{C}^N$. The **principal angles** between *U* and *V* are:

$$\cos(\theta_k) := \max_{\substack{\boldsymbol{a}_k \in U \\ \|\boldsymbol{a}_k\| = 1 \\ \langle \boldsymbol{a}_i, \boldsymbol{a}_k \rangle = 0 \text{ for } 1 \le i < k \\ }} \max_{\substack{\boldsymbol{b}_k \in V \\ \|\boldsymbol{b}_k\| = 1 \\ \|\boldsymbol{b}_k\| = 1 \\ \|\boldsymbol{b}_k\| = 1 \\ 0 \text{ for } 1 \le j < k \\ }} \langle \boldsymbol{a}_k, \boldsymbol{b}_k \rangle.$$

Geometric Interpretation

Say *A* projects to $U \subset \mathbb{C}^N$ and *B* projects to $V \subset \mathbb{C}^N$. The **principal angles** between *U* and *V* are:

$$\cos(\theta_k) := \max_{\substack{\boldsymbol{a}_k \in U \\ \|\boldsymbol{a}_k\| = 1 \\ \langle \boldsymbol{a}_i, \boldsymbol{a}_k \rangle = 0 \text{ for } 1 \le i < k \\ }} \max_{\substack{\boldsymbol{b}_k \in V \\ \|\boldsymbol{b}_k\| = 1 \\ \|\boldsymbol{b}_k\| = 1 \\ \|\boldsymbol{b}_k\| = 1 \\ 0 \text{ for } 1 \le j < k \\ }} \langle \boldsymbol{a}_k, \boldsymbol{b}_k \rangle.$$

Populate columns of U, V with orthonormal bases of U, V, so $A = UU^*, B = VV^*$. Then:

 $\cos(\theta_k) = k \text{th singular value of } U^* V$ = (kth eigenvalue of $U^* V V^* U$)^{1/2} = (kth eigenvalue of $UU^* V V^* U U^*$)^{1/2} = (kth eigenvalue of <u>ABA</u>)^{1/2}. "angle operator"

Application: Submatrices

Special case: *A* is diagonal, a **coordinate projection**:

$$\boldsymbol{A} = \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & 1 & \\ & & 0 & \\ & & & 1 \end{bmatrix}$$

Application: Submatrices

Special case: *A* is diagonal, a **coordinate projection**:

$$\boldsymbol{A} = \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & 1 & & \\ & & & 0 & \\ & & & & 1 \end{bmatrix}$$

Then, *ABA* extracts a **submatrix**:

Submatrices ~ Induced Subgraphs

A **strongly** *d***-regular graph** has only three eigenvalues: the "trivial" *d* eigenvalue, and two with large multiplicity:

$$G = \frac{d}{N} \mathbf{1} \mathbf{1}^* + \lambda_1 B_1 + \lambda_2 B_2$$

= $\frac{d}{N} \mathbf{1} \mathbf{1}^* + \lambda_1 B_1 + \lambda_2 \left(\mathbf{I} - \mathbf{B}_1 - \frac{1}{N} \mathbf{1} \mathbf{1}^* \right)$
= $(\lambda_1 - \lambda_2) B_1$ + simple adjustment.

Submatrices ~ Induced Subgraphs

A **strongly** *d***-regular graph** has only three eigenvalues: the "trivial" *d* eigenvalue, and two with large multiplicity:

$$G = \frac{d}{N}\mathbf{1}\mathbf{1}^* + \lambda_1 B_1 + \lambda_2 B_2$$

= $\frac{d}{N}\mathbf{1}\mathbf{1}^* + \lambda_1 B_1 + \lambda_2 \left(\mathbf{I} - \mathbf{B}_1 - \frac{1}{N}\mathbf{1}\mathbf{1}^*\right)$
= $(\lambda_1 - \lambda_2)B_1$ + simple adjustment.

If $(A_S)_{ii} = \mathbb{1}\{i \in S\}$ for $S \subseteq [N]$, then

 $A_S G A_S$ = adjacency matrix of induced subgraph on *S*,

and we can understand the spectrum via $A_S B_1 A_S$.

Submatrices ~~ Restricted Isometry Property

In **compressed sensing**, want $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_N \in \mathbb{C}^M$ with $N \gg M$ so that any small subset is close to orthonormal.

Submatrices ~~ Restricted Isometry Property

In **compressed sensing**, want $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_N \in \mathbb{C}^M$ with $N \gg M$ so that any small subset is close to orthonormal.

$$V = \begin{bmatrix} | & | \\ \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_N \\ | & | \end{bmatrix},$$

k-RIP constant = $\max_{i_1,\dots,i_k \in [N]} \left\| (\langle \boldsymbol{v}_{i_a}, \boldsymbol{v}_{i_b} \rangle)_{a,b=1}^k - \boldsymbol{I}_k \right\|$
= $\max_{S \subseteq [N], |S| = k} \left\| \boldsymbol{A}_S \boldsymbol{V}^* \boldsymbol{V} \boldsymbol{A}_S - \boldsymbol{I}_k \oplus \boldsymbol{0} \right\|.$

Submatrices ~~ Restricted Isometry Property

In **compressed sensing**, want $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_N \in \mathbb{C}^M$ with $N \gg M$ so that any small subset is close to orthonormal.

$$m{V} = \left[egin{array}{ccc} ert & ert & ert \ m{v}_1 & \cdots & m{v}_N \ ert & ert & ert \end{array}
ight],$$

$$k\text{-RIP constant} = \max_{i_1,\dots,i_k \in [N]} \left\| \left(\langle \boldsymbol{v}_{i_a}, \boldsymbol{v}_{i_b} \rangle \right)_{a,b=1}^k - \boldsymbol{I}_k \right\|$$
$$= \max_{S \subset [N], |S|=k} \left\| \left| \boldsymbol{A}_S \boldsymbol{V}^* \boldsymbol{V} \boldsymbol{A}_S - \boldsymbol{I}_k \oplus \boldsymbol{0} \right| \right|.$$

The \boldsymbol{v}_i are a **tight frame** if $\sum_{i=1}^N \boldsymbol{v}_i \boldsymbol{v}_i^* = \boldsymbol{V} \boldsymbol{V}^* = \boldsymbol{c} \boldsymbol{I}_M$.

If so, $V^*V = cB$ is a rescaled projection, so this is a question about the eigenvalues (over all *S*) of A_SBA_S .

MANOVA Universality Class

MANOVA Universality Class

Summary: If *U* and *V* are in "sufficiently general position," then the eigenvalues of *ABA* follow the universal **Wachter MANOVA distribution** with density:

$$d\mu_{\alpha,\beta}(x) = \frac{\sqrt{(r_{+} - x)(x - r_{-})}}{2\pi x(1 - x)} \mathbb{1}_{[r_{-}, r_{+}]}(x) dx + \max\{1 - \beta, 1 - \alpha\} \,\delta_{0}(x) + \max\{\beta - (1 - \alpha), 0\} \,\delta_{1}(x), r_{\pm} = \alpha + \beta - 2\alpha\beta \pm 2\sqrt{\alpha(1 - \alpha)\beta(1 - \beta)} = \left(\sqrt{\alpha(1 - \beta)} \pm \sqrt{\beta(1 - \alpha)}\right)^{2} \in (0, 1).$$

MANOVA Universality Class

Summary: If *U* and *V* are in "sufficiently general position," then the eigenvalues of *ABA* follow the universal **Wachter MANOVA distribution** with density:

$$d\mu_{\alpha,\beta}(x) = \frac{\sqrt{(r_{+} - x)(x - r_{-})}}{2\pi x(1 - x)} \mathbb{1}_{[r_{-}, r_{+}]}(x) dx + \max\{1 - \beta, 1 - \alpha\} \,\delta_{0}(x) + \max\{\beta - (1 - \alpha), 0\} \,\delta_{1}(x), r_{\pm} = \alpha + \beta - 2\alpha\beta \pm 2\sqrt{\alpha(1 - \alpha)\beta(1 - \beta)} = \left(\sqrt{\alpha(1 - \beta)} \pm \sqrt{\beta(1 - \alpha)}\right)^{2} \in (0, 1).$$

Interpretation: Eigenvalues $(1 - \beta)\delta_0 + \beta\delta_1$ of *B* are smoothed, 0 atom increases, 1 atom decreases.

II. Empirical Spectral Distribution

Free Probability Perspective [Voiculescu '90s]

Consider sequences of random orthogonal projections $A^{(N)}, B^{(N)} \in \mathbb{C}^N$ with

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)} = \boldsymbol{\alpha}, \quad \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)} = \boldsymbol{\beta}.$$

Free Probability Perspective [Voiculescu '90s]

Consider sequences of random orthogonal projections $A^{(N)}, B^{(N)} \in \mathbb{C}^N$ with

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)} = \boldsymbol{\alpha}, \quad \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)} = \boldsymbol{\beta}.$$

Equivalent to convergence of e.s.d.'s to $Ber(\alpha)$, $Ber(\beta)$.

Free Probability Perspective [Voiculescu '90s]

Consider sequences of random orthogonal projections $A^{(N)}, B^{(N)} \in \mathbb{C}^N$ with

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)} = \boldsymbol{\alpha}, \quad \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)} = \boldsymbol{\beta}.$$

Equivalent to convergence of e.s.d.'s to $Ber(\alpha)$, $Ber(\beta)$.

Free probability \rightsquigarrow if $(A^{(N)}, B^{(N)})$ asymptotically free, have convergence (in moments) of e.s.d. of $A^{(N)}B^{(N)}A^{(N)}$ to

 $Ber(\alpha) \boxtimes Ber(\beta) = \mu_{\alpha,\beta}.$

To establish weak convergence, suffices to establish asymptotic freeness.

Asymptotic Freeness for Projections

Usual definition: for all $s_1, t_1, \ldots, s_k, t_k \ge 1$, let

$$a_i := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} A^{(N)^{s_i}}, \quad b_i := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} B^{(N)^{t_i}}$$

Then, asymptotic freeness \Leftrightarrow for any such choice,

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr}\prod_{i=1}^{k}(\boldsymbol{A}^{(N)^{s_{i}}}-a_{i}\boldsymbol{I}_{N})(\boldsymbol{B}^{(N)^{t_{i}}}-b_{i}\boldsymbol{I}_{N})=0.$$

Asymptotic Freeness for Projections

Usual definition: for all $s_1, t_1, \ldots, s_k, t_k \ge 1$, let

$$a_i := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} A^{(N)^{s_i}}, \quad b_i := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} B^{(N)^{t_i}}$$

Then, asymptotic freeness \Leftrightarrow for any such choice,

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr}\prod_{i=1}^{k}(\boldsymbol{A}^{(N)^{s_i}}-a_i\boldsymbol{I}_N)(\boldsymbol{B}^{(N)^{t_i}}-b_i\boldsymbol{I}_N)=0.$$

But for projections, by idempotence, enough to analyze **one-parameter family of traces** $s_1 = t_1 = \cdots = s_k = t_k = 1$:

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr}\left((\boldsymbol{A}^{(N)}-\alpha\boldsymbol{I}_N)(\boldsymbol{B}^{(N)}-\beta\boldsymbol{I}_N)\right)^k=0.$$

Main Theorem 1 [K '23]

 $A^{(N)}$, $B^{(N)} \in \mathbb{C}^{N \times N}$ random orthogonal projections with

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr} \boldsymbol{A}^{(N)} = \boldsymbol{\alpha}, \quad \lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr} \boldsymbol{B}^{(N)} = \boldsymbol{\beta},$$

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \left((\boldsymbol{A}^{(N)} - \alpha \boldsymbol{I}_N) (\boldsymbol{B}^{(N)} - \beta \boldsymbol{I}_N) \right)^k = 0 \text{ for all } k \ge 1.$$

Main Theorem 1 [K '23]

 $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N \times N} \text{ random orthogonal projections with}$ $\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)} = \alpha, \quad \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)} = \beta,$ $\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \left((\boldsymbol{A}^{(N)} - \alpha \boldsymbol{I}_N) (\boldsymbol{B}^{(N)} - \beta \boldsymbol{I}_N) \right)^k = 0 \text{ for all } k \ge 1.$

Then, we have **convergence in moments**: for all $k \ge 1$,

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr}(A^{(N)}B^{(N)}A^{(N)})^{k} = \mathop{\mathbb{E}}_{\lambda\sim\mu_{\alpha,\beta}}\lambda^{k}.$$

Main Theorem 1 [K '23]

 $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N \times N} \text{ random orthogonal projections with}$ $\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)} = \boldsymbol{\alpha}, \quad \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)} = \boldsymbol{\beta},$ $\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \left((\boldsymbol{A}^{(N)} - \boldsymbol{\alpha} \boldsymbol{I}_N) (\boldsymbol{B}^{(N)} - \boldsymbol{\beta} \boldsymbol{I}_N) \right)^k = 0 \text{ for all } k \ge 1.$

Then, we have **convergence in moments**: for all $k \ge 1$,

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\operatorname{Tr}(\boldsymbol{A}^{(N)}\boldsymbol{B}^{(N)}\boldsymbol{A}^{(N)})^{k} = \mathop{\mathbb{E}}_{\lambda\sim\mu_{\alpha,\beta}}\lambda^{k}.$$

Remarks:

- Straightforward application of free probability tools.
- Extended to weak convergence in probability or a.s.

Application: Random Subsets of Frames

Main Theorem 1 applies with:

- $A^{(N)}$ diagonal, $A_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$,
- $\boldsymbol{B}^{(N)} = \frac{M}{N} \boldsymbol{V}^{(N)*} \boldsymbol{V}^{(N)}$ for $\boldsymbol{V}^{(N)} = [\boldsymbol{v}_1 \cdots \boldsymbol{v}_N] \in \mathbb{C}^{M \times N}$ (deterministic!) tight frames having $\frac{M}{N} \to \boldsymbol{\beta} \in (0, 1)$ and

$$\max_{i,j\in[N]} \left| \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle - \mathbb{1}\{i=j\} \right| \le N^{-1/2+o(1)}.$$

Application: Random Subsets of Frames

Main Theorem 1 applies with:

- $A^{(N)}$ diagonal, $A_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$,
- $\boldsymbol{B}^{(N)} = \frac{M}{N} \boldsymbol{V}^{(N)*} \boldsymbol{V}^{(N)}$ for $\boldsymbol{V}^{(N)} = [\boldsymbol{v}_1 \cdots \boldsymbol{v}_N] \in \mathbb{C}^{M \times N}$ (deterministic!) tight frames having $\frac{M}{N} \to \boldsymbol{\beta} \in (0, 1)$ and

$$\max_{i,j\in[N]} |\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle - \mathbb{1}\{i=j\}| \le N^{-1/2+o(1)}$$

Answers signal processing and combinatorics questions:

- Proves conjecture of [Haikin, Zamir, Gavish '17]
- Simplifies [Mixon, Magsino, Parshall '21] (Paley frames)
- Simplifies [Farrell '11] (Fourier frames)

Application: Random Subsets of Frames

Main Theorem 1 applies with:

- $A^{(N)}$ diagonal, $A_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$,
- $\boldsymbol{B}^{(N)} = \frac{M}{N} \boldsymbol{V}^{(N)*} \boldsymbol{V}^{(N)}$ for $\boldsymbol{V}^{(N)} = [\boldsymbol{v}_1 \cdots \boldsymbol{v}_N] \in \mathbb{C}^{M \times N}$ (deterministic!) tight frames having $\frac{M}{N} \to \boldsymbol{\beta} \in (0, 1)$ and

$$\max_{i,j\in[N]} |\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle - \mathbb{1}\{i=j\}| \le N^{-1/2+o(1)}$$

Answers signal processing and combinatorics questions:

- Proves conjecture of [Haikin, Zamir, Gavish '17]
- Simplifies [Mixon, Magsino, Parshall '21] (Paley frames)
- Simplifies [Farrell '11] (Fourier frames)

...with easy proof!

Proof Sketch

Just expand and bound naively:

$$\frac{1}{N} |\mathbb{E} \operatorname{Tr} \left((A - \alpha I) (B - \beta I) \right)^{k} |$$

$$\leq \frac{1}{N} \sum_{i_{1},\dots,i_{k}=1}^{N} |\mathbb{E} \left[(A_{i_{1}i_{1}} - \alpha) \cdots (A_{i_{k}i_{k}} - \alpha) \right] |$$

$$|B_{i_{1}i_{2}} - \beta \mathbb{1} \{ i_{1} = i_{2} \} | \cdots |B_{i_{k}i_{1}} - \beta \mathbb{1} \{ i_{k} = i_{1} \} |$$

$$\lesssim_{k} N^{-1} \cdot \underbrace{N^{k/2}}_{\text{# non-zero terms}} \cdot N^{-k/2 + o(1)}$$

$$\rightarrow 0.$$

Proof Sketch

Just expand and bound naively:

$$\begin{aligned} \frac{1}{N} |\mathbb{E} \operatorname{Tr} \left((A - \alpha I) (B - \beta I) \right)^k | \\ &\leq \frac{1}{N} \sum_{i_1, \dots, i_k=1}^N |\mathbb{E} [(A_{i_1 i_1} - \alpha) \cdots (A_{i_k i_k} - \alpha)] | \\ &\quad |B_{i_1 i_2} - \beta \mathbb{1} \{ i_1 = i_2 \} | \cdots |B_{i_k i_1} - \beta \mathbb{1} \{ i_k = i_1 \} | \\ &\lesssim_k N^{-1} \cdot \underbrace{N^{k/2}}_{\text{ # non-zero terms}} \cdot N^{-k/2 + o(1)} \\ &\quad \# \text{ non-zero terms} \\ \rightarrow 0. \end{aligned}$$

Previous work finds a "main term" and "error term" in $\frac{1}{N}\mathbb{E} \operatorname{Tr}(ABA)^k$ directly, redoing free probability by hand.

Aside: Free Probability with "Less Randomness"

Classical results (Voiculescu et al.) treat "very random" models: *A*, *B* unitarily invariant projections, i.e., to uniformly random subspaces of \mathbb{C}^N .

Aside: Free Probability with "Less Randomness"

Classical results (Voiculescu et al.) treat "very random" models: *A*, *B* unitarily invariant projections, i.e., to uniformly random subspaces of \mathbb{C}^N .

This line of work: the same freeness and spectral limits hold for **much less random** models (e.g., *B* deterministic and *A* diagonal).

Aside: Free Probability with "Less Randomness"

Classical results (Voiculescu et al.) treat "very random" models: *A*, *B* unitarily invariant projections, i.e., to uniformly random subspaces of \mathbb{C}^N .

This line of work: the same freeness and spectral limits hold for **much less random** models (e.g., *B* deterministic and *A* diagonal).

Companion work [K '23]: some cases where the same limits hold for **completely deterministic** models, e.g., built on the Paley frames and Paley graph of number theory.

Asymptotic Freeness in Paley Graphs

 G_p a graph on vertices $\mathbb{Z}/p\mathbb{Z}$ (with $p \equiv 1 \mod 4$) with $i \sim j$ iff j - i is a **square** mod p (for some $x \neq 0$, $j - i \equiv x^2$).

 G_p is strongly regular; fits in previous framework.

Asymptotic Freeness in Paley Graphs

 G_p a graph on vertices $\mathbb{Z}/p\mathbb{Z}$ (with $p \equiv 1 \mod 4$) with $i \sim j$ iff j - i is a **square** mod p (for some $x \neq 0$, $j - i \equiv x^2$).

 G_p is strongly regular; fits in previous framework.

Theorem: [K '23] The associated projection B is asymptotically free of coordinate projections A_S for any

 $S = \{j : j \sim i \text{ in } G_p\} =$ "neighborhood of *i*".

So, e.s.d. $\rightarrow \mu_{1/2,1/2} =$ **arcsine law**. (Partial generalization to other "low-degree" sets *S*.)

Asymptotic Freeness in Paley Graphs

 G_p a graph on vertices $\mathbb{Z}/p\mathbb{Z}$ (with $p \equiv 1 \mod 4$) with $i \sim j$ iff j - i is a **square** mod p (for some $x \neq 0$, $j - i \equiv x^2$).

 G_p is strongly regular; fits in previous framework.

Theorem: [K '23] The associated projection B is asymptotically free of coordinate projections A_S for any

 $S = \{j : j \sim i \text{ in } G_p\} =$ "neighborhood of *i*".

So, e.s.d. $\rightarrow \mu_{1/2,1/2}$ = **arcsine law**. (Partial generalization to other "low-degree" sets *S*.)

Moral: Freeness does not require probability!

III. The Largest Eigenvalue

Conjecture and Difficulties

Natural extension of previous results:

Edge Conjecture: For many $A^{(N)}$, $B^{(N)}$ with e.s.d. of $A^{(N)}B^{(N)}A^{(N)}$ converging weakly to $\mu_{\alpha,\beta}$,

 $\lambda_{\max}(\boldsymbol{A}^{(N)}\boldsymbol{B}^{(N)}\boldsymbol{A}^{(N)}) \xrightarrow{(\mathsf{p})} \mathsf{edge}(\alpha,\beta) := \mathsf{right} \, \mathsf{edge} \, \mathsf{of} \, \mu_{\alpha,\beta}.$

Conjecture and Difficulties

Natural extension of previous results:

Edge Conjecture: For many $A^{(N)}$, $B^{(N)}$ with e.s.d. of $A^{(N)}B^{(N)}A^{(N)}$ converging weakly to $\mu_{\alpha,\beta}$,

 $\lambda_{\max}(\mathbf{A}^{(N)}\mathbf{B}^{(N)}\mathbf{A}^{(N)}) \xrightarrow{(p)} \mathsf{edge}(\alpha, \beta) := \mathsf{right edge of } \mu_{\alpha,\beta}.$

As in models from classical random matrix theory (e.g., Wigner and Wishart), the difficulty is in controlling moments of diverging order:

$$\mathbb{E}\operatorname{Tr}(\boldsymbol{A}^{(N)}\boldsymbol{B}^{(N)}\boldsymbol{A}^{(N)})^{k} \stackrel{?}{\leq} (\operatorname{edge}(\alpha,\beta) + o(1))^{k}$$

for $k \gg \log(N)$.

Main Theorem 2

For $A^{(N)}$, $B^{(N)}$ as in Main Theorem 1, suppose additionally that one of α or β is $\frac{1}{2}$ and that for $k = k(N) \gg \log(N)$,

$$\max_{1 \le a \le k} \left| \mathbb{E} \operatorname{Tr} \left(\frac{A^{(N)} - \alpha I_N}{\sqrt{\alpha(1 - \alpha)}} \frac{B^{(N)} - \beta I_N}{\sqrt{\beta(1 - \beta)}} \right)^a \right| \le \exp(o(k)).$$

Then,

$$\lambda_{\max}(\boldsymbol{A}^{(N)}\boldsymbol{B}^{(N)}\boldsymbol{A}^{(N)}) \xrightarrow{(p)} \mathsf{edge}(\alpha,\beta).$$

Main Theorem 2

For $A^{(N)}$, $B^{(N)}$ as in Main Theorem 1, suppose additionally that one of α or β is $\frac{1}{2}$ and that for $k = k(N) \gg \log(N)$,

$$\max_{1 \le a \le k} \left| \mathbb{E} \operatorname{Tr} \left(\frac{A^{(N)} - \alpha I_N}{\sqrt{\alpha(1 - \alpha)}} \frac{B^{(N)} - \beta I_N}{\sqrt{\beta(1 - \beta)}} \right)^a \right| \le \exp(o(k)).$$

Then,

$$\lambda_{\max}(\boldsymbol{A}^{(N)}\boldsymbol{B}^{(N)}\boldsymbol{A}^{(N)}) \xrightarrow{(p)} \mathsf{edge}(\alpha,\beta).$$

Similar idea to Main Theorem 1: isolate an **error term**, which should be easier to control than $Tr(A^{(N)}B^{(N)}A^{(N)})^k$.

Main Theorem 2

For $A^{(N)}$, $B^{(N)}$ as in Main Theorem 1, suppose additionally that one of α or β is $\frac{1}{2}$ and that for $k = k(N) \gg \log(N)$,

$$\max_{1 \le a \le k} \left| \mathbb{E} \operatorname{Tr} \left(\frac{A^{(N)} - \alpha I_N}{\sqrt{\alpha(1 - \alpha)}} \frac{B^{(N)} - \beta I_N}{\sqrt{\beta(1 - \beta)}} \right)^a \right| \le \exp(o(k)).$$

Then,

$$\lambda_{\max}(\boldsymbol{A}^{(N)}\boldsymbol{B}^{(N)}\boldsymbol{A}^{(N)}) \xrightarrow{(p)} \mathsf{edge}(\alpha,\beta).$$

Similar idea to Main Theorem 1: isolate an **error term**, which should be easier to control than $Tr(A^{(N)}B^{(N)}A^{(N)})^k$.

Conjecture: Extra condition on α , β not necessary.

Seems just a technical challenge—stay tuned for details.

Main Theorem 2: Intuition

Why do these normalizations appear?

$$\hat{\boldsymbol{A}} := (\boldsymbol{A}^{(N)} - \alpha \boldsymbol{I}_N) / \sqrt{\alpha(1-\alpha)}, \quad \hat{\boldsymbol{B}} := (\boldsymbol{B}^{(N)} - \beta \boldsymbol{I}_N) / \sqrt{\beta(1-\beta)}$$

Main Theorem 2: Intuition

Why do these normalizations appear?

$$\widehat{\boldsymbol{A}} := (\boldsymbol{A}^{(N)} - \alpha \boldsymbol{I}_N) / \sqrt{\alpha(1-\alpha)}, \quad \widehat{\boldsymbol{B}} := (\boldsymbol{B}^{(N)} - \beta \boldsymbol{I}_N) / \sqrt{\beta(1-\beta)}$$

Normalization whitens the spectrum: if $\lambda_i(\mathbf{A}^{(N)}) \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$ and $\lambda_i(\mathbf{B}^{(N)}) \stackrel{\text{iid}}{\sim} \text{Ber}(\beta)$, then

$$\mathbb{E}\lambda_i(\hat{A}) = \mathbb{E}\lambda_i(\hat{B}) = 0,$$
$$\mathbb{E}\lambda_i(\hat{A})^2 = \mathbb{E}\lambda_i(\hat{B})^2 = 1.$$

 $\rightsquigarrow \hat{A}, \hat{B}$ are orthogonal in expectation.

Main Theorem 2: Intuition

Why do these normalizations appear?

$$\hat{\boldsymbol{A}} := (\boldsymbol{A}^{(N)} - \alpha \boldsymbol{I}_N) / \sqrt{\alpha(1-\alpha)}, \ \ \hat{\boldsymbol{B}} := (\boldsymbol{B}^{(N)} - \beta \boldsymbol{I}_N) / \sqrt{\beta(1-\beta)}$$

Normalization whitens the spectrum: if $\lambda_i(\mathbf{A}^{(N)}) \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$ and $\lambda_i(\mathbf{B}^{(N)}) \stackrel{\text{iid}}{\sim} \text{Ber}(\beta)$, then

$$\mathbb{E}\lambda_i(\hat{A}) = \mathbb{E}\lambda_i(\hat{B}) = 0,$$
$$\mathbb{E}\lambda_i(\hat{A})^2 = \mathbb{E}\lambda_i(\hat{B})^2 = 1.$$

 $\rightsquigarrow \hat{A}, \hat{B}$ are orthogonal in expectation. Actually orthogonal matrices would indeed satisfy

$$|\operatorname{Tr}(\widehat{A}\widehat{B})^k| \le N = \exp(o(k)).$$

Exact relation between centered and uncentered moments by "trace rewriting" using idempotence:

$$\operatorname{Tr} \left((\boldsymbol{A} - \alpha \boldsymbol{I}_N) (\boldsymbol{B} - \beta \boldsymbol{I}_N) \right)^k$$

= $w \operatorname{Tr}(\boldsymbol{I}_N) + x \operatorname{Tr}(\boldsymbol{A}) + y \operatorname{Tr}(\boldsymbol{B}) + \sum_{\ell=1}^k z_\ell \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A})^\ell.$

Exact relation between centered and uncentered moments by "trace rewriting" using idempotence:

$$\operatorname{Tr} \left((\boldsymbol{A} - \alpha \boldsymbol{I}_N) (\boldsymbol{B} - \beta \boldsymbol{I}_N) \right)^k$$

= $w \operatorname{Tr}(\boldsymbol{I}_N) + x \operatorname{Tr}(\boldsymbol{A}) + y \operatorname{Tr}(\boldsymbol{B}) + \sum_{\ell=1}^k z_\ell \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A})^\ell.$

Inverting this, the "main term" is the limiting MANOVA moment:

$$\mathsf{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A})^{k} = N \mathop{\mathbb{E}}_{\lambda \sim \mu_{\alpha,\beta}} \lambda^{k} + x'(\mathsf{Tr}(\boldsymbol{A}) - \alpha N) + y'(\mathsf{Tr}(\boldsymbol{B}) - \beta N) \\ + \sum_{\ell=1}^{k} z_{\ell}' \operatorname{Tr}\left((\boldsymbol{A} - \alpha \boldsymbol{I}_{N})(\boldsymbol{B} - \beta \boldsymbol{I}_{N})\right)^{k}.$$

First result: an explicit recursion for the moment errors

$$\Delta_{k} = \mathsf{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A})^{k} - N \mathop{\mathbb{E}}_{\lambda \sim \mu_{\alpha,\beta}} \lambda^{k}$$
$$\approx \sum_{\ell=1}^{k-1} c_{k,\ell} \Delta_{\ell} + c_{k}' \operatorname{Tr}\left((\boldsymbol{A} - \alpha \boldsymbol{I}_{N})(\boldsymbol{B} - \beta \boldsymbol{I}_{N})\right)^{k}.$$

Still not easy to analyze for large *k*...

First result: an explicit recursion for the moment errors

$$\Delta_{k} = \mathsf{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A})^{k} - N \mathop{\mathbb{E}}_{\lambda \sim \mu_{\alpha,\beta}} \lambda^{k}$$
$$\approx \sum_{\ell=1}^{k-1} c_{k,\ell} \Delta_{\ell} + c_{k}' \operatorname{Tr} \left((\boldsymbol{A} - \alpha \boldsymbol{I}_{N}) (\boldsymbol{B} - \beta \boldsymbol{I}_{N}) \right)^{k}.$$

Still not easy to analyze for large *k*...

Saving grace: if α or β is $\frac{1}{2}$, can solve this recursion in closed form!

Identify **Riordan arrays** in recursion: triangular matrices with special generating functions allowing formal inversion.

"Application:" New Proof for Invariant Model

New, arguably **more robust**, proof of edge limit theorem for $A^{(N)}$, $B^{(N)}$ unitarily invariant projections.

"Application:" New Proof for Invariant Model

New, arguably **more robust**, proof of edge limit theorem for $A^{(N)}$, $B^{(N)}$ unitarily invariant projections.

Model equivalent to:

A diagonal with $A_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$, **D** diagonal with $D_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\beta)$, $U \sim \text{Haar}(\mathcal{U}(N))$, $B = UDU^*$. "Application:" New Proof for Invariant Model

New, arguably **more robust**, proof of edge limit theorem for $A^{(N)}$, $B^{(N)}$ unitarily invariant projections.

Model equivalent to:

A diagonal with
$$A_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\alpha)$$
,
D diagonal with $D_{ii} \stackrel{\text{iid}}{\sim} \text{Ber}(\beta)$,
 $U \sim \text{Haar}(\mathcal{U}(N))$,
 $B = UDU^*$.

Proof: expand; use non-asymptotic bounds for Weingarten function [Collins, Matsumoto '17] to control moments

$$\mathbb{E}[U_{i_1j_1}\cdots U_{i_kj_k}\overline{U_{i'_1j'_1}}\cdots \overline{U_{i'_kj'_k}}].$$

Obstacles to General Models

Consider same *A* but *B* deterministic (like in frame application) and real symmetric.

Obstacles to General Models

Consider same A but B deterministic (like in frame application) and real symmetric.

No expectation over *B*; expanding traces leads to trying to analyze **"graphical moments"** of *B*:

From a graph G = ([k], E) and $B \in \mathbb{R}^{N \times N}_{svm}$, compute

$$\sum_{i_1,\dots,i_k\in[N] \text{ distinct }} \prod_{\{a,b\}\in E} B_{i_a i_b}.$$

Scalar version of **graph matrices** appearing in literature on **sum-of-squares optimization**.

Techniques to analyze for general *G* and deterministic *B*?

Numerical experiments ~-> Edge Conjecture should hold for Paley graph construction.

Numerical experiments ~-> Edge Conjecture should hold for Paley graph construction.

Proof would probably require intricate analysis of character sums (\approx graphical moments in ± 1 adjacency matrix).

Numerical experiments ---- Edge Conjecture should hold for Paley graph construction.

Proof would probably require intricate analysis of character sums (\approx graphical moments in ± 1 adjacency matrix).

But, by enhanced spectral bound on clique number, would yield progress on long-standing open problem:

Conjecture: Largest clique in G_p is O(polylog(p)).

Best known upper bound: Largest clique in G_p is $\leq \sqrt{p/2}$.

Numerical experiments ---- Edge Conjecture should hold for Paley graph construction.

Proof would probably require intricate analysis of character sums (\approx graphical moments in ± 1 adjacency matrix).

But, by enhanced spectral bound on clique number, would yield progress on long-standing open problem:

Conjecture: Largest clique in G_p is O(polylog(p)).

Best known upper bound: Largest clique in G_p is $\leq \sqrt{p/2}$.

Theorem: [K '23] If Edge Conjecture holds for Paley graph construction, then largest clique in G_p is $\leq o(\sqrt{p})$.

- Prove λ_{max} limit theorem for any non-invariant model.
 - Invariant model with discrete Fourier matrix instead of *U*: unsolved since [Farrell '11].
 - Deterministic subsets of Paley frames ⇒ improved bounds for clique number of Paley graph.

- Prove λ_{max} limit theorem for any non-invariant model.
 - Invariant model with discrete Fourier matrix instead of *U*: unsolved since [Farrell '11].
 - Deterministic subsets of Paley frames ⇒ improved bounds for clique number of Paley graph.
- Other universal features:
 - Local laws and spacing? [Farrell, Nadakuditi '15]
 - Rate of convergence of e.s.d.?

- Prove λ_{max} limit theorem for any non-invariant model.
 - Invariant model with discrete Fourier matrix instead of *U*: unsolved since [Farrell '11].
 - Deterministic subsets of Paley frames ⇒ improved bounds for clique number of Paley graph.
- Other universal features:
 - Local laws and spacing? [Farrell, Nadakuditi '15]
 - Rate of convergence of e.s.d.?
- Adapt to analyze RIP (all small submatrices)?

Thank you!