Spectral limit theorems for submatrices and products of projections

Tim Kunisky

Yale University

MIT Probability Seminar
April 24, 2023

I. Introduction

Eigenvalues Under Compression

$\boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{N \times N}$ orthogonal projections of linear rank:

$$
\begin{aligned}
& \frac{1}{N} \operatorname{Tr}(\boldsymbol{A}) \approx \alpha \in(0,1) \\
& \frac{1}{N} \operatorname{Tr}(\boldsymbol{B}) \approx \beta \in(0,1)
\end{aligned}
$$

Eigenvalues Under Compression

$\boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{N \times N}$ orthogonal projections of linear rank:

$$
\begin{aligned}
& \frac{1}{N} \operatorname{Tr}(\boldsymbol{A}) \approx \alpha \in(0,1) \\
& \frac{1}{N} \operatorname{Tr}(\boldsymbol{B}) \approx \beta \in(0,1)
\end{aligned}
$$

This specifies the empirical spectral distributions:

$$
\begin{aligned}
& \text { e.s.d. of } \boldsymbol{A} \approx(1-\alpha) \delta_{0}+\alpha \delta_{1}=\operatorname{Ber}(\alpha) \\
& \text { e.s.d. of } \boldsymbol{B} \approx(1-\beta) \delta_{0}+\beta \delta_{1}=\operatorname{Ber}(\beta) .
\end{aligned}
$$

Eigenvalues Under Compression

$\boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{N \times N}$ orthogonal projections of linear rank:

$$
\begin{aligned}
& \frac{1}{N} \operatorname{Tr}(\boldsymbol{A}) \approx \alpha \in(0,1) \\
& \frac{1}{N} \operatorname{Tr}(\boldsymbol{B}) \approx \beta \in(0,1)
\end{aligned}
$$

This specifies the empirical spectral distributions:

$$
\begin{aligned}
& \text { e.s.d. of } \boldsymbol{A} \approx(1-\alpha) \delta_{0}+\alpha \delta_{1}=\operatorname{Ber}(\alpha) \\
& \text { e.s.d. of } \boldsymbol{B} \approx(1-\beta) \delta_{0}+\beta \delta_{1}=\operatorname{Ber}(\beta) .
\end{aligned}
$$

How does compressing \boldsymbol{B} by \boldsymbol{A} change the eigenvalues?

$$
\text { e.s.d. of } A B A \approx \text { ? }
$$

Geometric Interpretation

Say \boldsymbol{A} projects to $U \subset \mathbb{C}^{N}$ and \boldsymbol{B} projects to $V \subset \mathbb{C}^{N}$.

Geometric Interpretation

Say \boldsymbol{A} projects to $U \subset \mathbb{C}^{N}$ and \boldsymbol{B} projects to $V \subset \mathbb{C}^{N}$. The principal angles between U and V are:

$$
\cos \left(\theta_{k}\right):=\begin{array}{|ccc}
\max _{\substack{\boldsymbol{a}_{k} \in U \\
\left\|\boldsymbol{a}_{k}\right\|=1}}^{\left\langle\boldsymbol{a}_{k}, \boldsymbol{a}_{k}\right\rangle=0 \text { for } 1 \leq i<k} & \max _{\substack{\| \boldsymbol{b}_{k} \in V=1 \\
\left\langle\boldsymbol{b}_{j}, \boldsymbol{b}_{k}\right\rangle=0 \text { for } 1 \leq j<k}}\left\langle\boldsymbol{a}_{k}, \boldsymbol{b}_{k}\right\rangle .
\end{array}
$$

Geometric Interpretation

Say \boldsymbol{A} projects to $U \subset \mathbb{C}^{N}$ and \boldsymbol{B} projects to $V \subset \mathbb{C}^{N}$. The principal angles between U and V are:

$$
\cos \left(\theta_{k}\right):=\max _{\substack{\boldsymbol{a}_{k} \in U \\\left\|\boldsymbol{a}_{k}\right\| \|=1 \\\left\langle\boldsymbol{a}_{i}, \boldsymbol{a}_{k}\right\rangle=0 \text { for } 1 \leq i<k}}^{\substack{\boldsymbol{b}_{k} \in V \\\left\|\boldsymbol{b}_{k}\right\|=1 \\\left\langle\boldsymbol{b}_{j}, \boldsymbol{b}_{k}\right\rangle=0 \text { for } 1 \leq j<k}}\left\langle\boldsymbol{a}_{k}, \boldsymbol{b}_{k}\right\rangle .
$$

Populate columns of $\boldsymbol{U}, \boldsymbol{V}$ with orthonormal bases of U, V, so $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{U}^{*}, \boldsymbol{B}=\boldsymbol{V} \boldsymbol{V}^{*}$. Then:

$$
\begin{aligned}
\cos \left(\theta_{k}\right) & =k \text { th singular value of } \boldsymbol{U}^{*} \boldsymbol{V} \\
& =\left(k \text { th eigenvalue of } \boldsymbol{U}^{*} V V^{*} \boldsymbol{U}\right)^{1 / 2} \\
& =\left(k \text { th eigenvalue of } U U^{*} V V^{*} U U^{*}\right)^{1 / 2} \\
& =(k \text { th eigenvalue of } \underbrace{A B A}_{\text {"angle operator" }})^{1 / 2} .
\end{aligned}
$$

Application: Submatrices

Special case: \boldsymbol{A} is diagonal, a coordinate projection:

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
0 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 0 & \\
& & & & 1
\end{array}\right]
$$

Application: Submatrices

Special case: \boldsymbol{A} is diagonal, a coordinate projection:

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
0 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 0 & \\
& & & & 1
\end{array}\right]
$$

Then, $\boldsymbol{A} \boldsymbol{B} \boldsymbol{A}$ extracts a submatrix:

Submatrices \leadsto Induced Subgraphs

A strongly d-regular graph has only three eigenvalues: the "trivial" d eigenvalue, and two with large multiplicity:

$$
\begin{aligned}
\boldsymbol{G} & =\frac{d}{N} \mathbf{1 1}^{*}+\lambda_{1} \boldsymbol{B}_{1}+\lambda_{2} \boldsymbol{B}_{2} \\
& =\frac{d}{N} \mathbf{1 1}^{*}+\lambda_{1} \boldsymbol{B}_{1}+\lambda_{2}\left(I-B_{1}-\frac{1}{N} \mathbf{1} \mathbf{1}^{*}\right) \\
& =\left(\lambda_{1}-\lambda_{2}\right) \boldsymbol{B}_{1}+\text { simple adjustment. }
\end{aligned}
$$

Submatrices \leadsto Induced Subgraphs

A strongly d-regular graph has only three eigenvalues: the "trivial" d eigenvalue, and two with large multiplicity:

$$
\begin{aligned}
\boldsymbol{G} & =\frac{d}{N} \mathbf{1 1}^{*}+\lambda_{1} \boldsymbol{B}_{1}+\lambda_{2} \boldsymbol{B}_{2} \\
& =\frac{d}{N} \mathbf{1 1}^{*}+\lambda_{1} \boldsymbol{B}_{1}+\lambda_{2}\left(I-B_{1}-\frac{1}{N} \mathbf{1} \mathbf{1}^{*}\right) \\
& =\left(\lambda_{1}-\lambda_{2}\right) \boldsymbol{B}_{1}+\text { simple adjustment. }
\end{aligned}
$$

If $\left(\boldsymbol{A}_{S}\right)_{i i}=\mathbb{1}\{i \in S\}$ for $S \subseteq[N]$, then
$\boldsymbol{A}_{S} \boldsymbol{G} \boldsymbol{A}_{S}=$ adjacency matrix of induced subgraph on S, and we can understand the spectrum via $\boldsymbol{A}_{S} \boldsymbol{B}_{1} \boldsymbol{A}_{S}$.

Submatrices m Restricted Isometry Property

In compressed sensing, want $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N} \in \mathbb{C}^{M}$ with $N \gg M$ so that any small subset is close to orthonormal.

Submatrices m Restricted Isometry Property

In compressed sensing, want $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N} \in \mathbb{C}^{M}$ with $N \gg M$ so that any small subset is close to orthonormal.

$$
\begin{aligned}
\boldsymbol{V} & =\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{N} \\
\mid & & \mid
\end{array}\right], \\
k \text {-RIP constant } & =\max _{i_{1}, \ldots, i_{k} \in[N]}\left\|\left(\left\langle\boldsymbol{v}_{i_{a}}, \boldsymbol{v}_{i_{b}}\right\rangle\right)_{a, b=1}^{k}-\boldsymbol{I}_{k}\right\| \\
& =\max _{S \subset[N],|S|=k}\left\|\boldsymbol{A}_{S} \boldsymbol{V}^{*} \boldsymbol{V} \boldsymbol{A}_{S}-\boldsymbol{I}_{k} \oplus \mathbf{0}\right\| .
\end{aligned}
$$

Submatrices $\leadsto \sim$ Restricted Isometry Property

In compressed sensing, want $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N} \in \mathbb{C}^{M}$ with $N \gg M$ so that any small subset is close to orthonormal.

$$
\begin{aligned}
\boldsymbol{V} & =\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{N} \\
\mid & & \mid
\end{array}\right], \\
k \text {-RIP constant } & =\max _{i_{1}, \ldots, i_{k} \in[N]}\left\|\left(\left\langle\boldsymbol{v}_{i_{a}}, \boldsymbol{v}_{i_{b}}\right\rangle\right)_{a, b=1}^{k}-\boldsymbol{I}_{k}\right\| \\
& =\max _{S \subset[N],|S|=k}\left\|\boldsymbol{A}_{S} \boldsymbol{V}^{*} \boldsymbol{V} \boldsymbol{A}_{S}-\boldsymbol{I}_{k} \oplus \mathbf{0}\right\| .
\end{aligned}
$$

The \boldsymbol{v}_{i} are a tight frame if $\sum_{i=1}^{N} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{*}=\boldsymbol{V} \boldsymbol{V}^{*}=c \boldsymbol{I}_{M}$.
If so, $\boldsymbol{V}^{*} \boldsymbol{V}=c \boldsymbol{B}$ is a rescaled projection, so this is a question about the eigenvalues (over all S) of $\boldsymbol{A}_{S} \boldsymbol{B} \boldsymbol{A}_{S}$.

MANOVA Universality Class

MANOVA Universality Class

Summary: If U and V are in "sufficiently general position," then the eigenvalues of $A B A$ follow the universal Wachter MANOVA distribution with density:

$$
\begin{aligned}
d \mu_{\alpha, \beta}(x)= & \frac{\sqrt{\left(r_{+}-x\right)\left(x-r_{-}\right)}}{2 \pi x(1-x)} \mathbb{1}_{\left[r-, r_{+}\right]}(x) d x \\
& +\max \{1-\beta, 1-\alpha\} \delta_{0}(x) \\
& +\max \{\beta-(1-\alpha), 0\} \delta_{1}(x), \\
r_{ \pm}=\alpha & +\beta-2 \alpha \beta \pm 2 \sqrt{\alpha(1-\alpha) \beta(1-\beta)} \\
= & (\sqrt{\alpha(1-\beta)} \pm \sqrt{\beta(1-\alpha)})^{2} \in(0,1) .
\end{aligned}
$$

MANOVA Universality Class

Summary: If U and V are in "sufficiently general position," then the eigenvalues of $A B A$ follow the universal Wachter MANOVA distribution with density:

$$
\begin{aligned}
d \mu_{\alpha, \beta}(x)= & \frac{\sqrt{\left(r_{+}-x\right)\left(x-r_{-}\right)}}{2 \pi x(1-x)} \mathbb{1}_{\left[r-, r_{+}\right]}(x) d x \\
& +\max \{1-\beta, 1-\alpha\} \delta_{0}(x) \\
& +\max \{\beta-(1-\alpha), 0\} \delta_{1}(x), \\
r_{ \pm}=\alpha & +\beta-2 \alpha \beta \pm 2 \sqrt{\alpha(1-\alpha) \beta(1-\beta)} \\
= & (\sqrt{\alpha(1-\beta)} \pm \sqrt{\beta(1-\alpha)})^{2} \in(0,1) .
\end{aligned}
$$

Interpretation: Eigenvalues $(1-\beta) \delta_{0}+\beta \delta_{1}$ of \boldsymbol{B} are smoothed, 0 atom increases, 1 atom decreases.

II. Empirical Spectral Distribution

Free Probability Perspective [Voiculesu'90s]

Consider sequences of random orthogonal projections $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N}$ with

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)}=\alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)}=\beta
$$

Free Probability Perspective [Voiculesu'90s]

Consider sequences of random orthogonal projections $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N}$ with

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)}=\alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)}=\beta
$$

Equivalent to convergence of e.s.d.'s to $\operatorname{Ber}(\alpha), \operatorname{Ber}(\beta)$.

Free Probability Perspective [Voiculescu'90s]

Consider sequences of random orthogonal projections $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N}$ with

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)}=\alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)}=\beta
$$

Equivalent to convergence of e.s.d.'s to $\operatorname{Ber}(\alpha), \operatorname{Ber}(\beta)$.
Free probability \leadsto if $\left(\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}\right)$ asymptotically free, have convergence (in moments) of e.s.d. of $\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}$ to

$$
\operatorname{Ber}(\alpha) \boxtimes \operatorname{Ber}(\beta)=\mu_{\alpha, \beta}
$$

To establish weak convergence, suffices to establish asymptotic freeness.

Asymptotic Freeness for Projections

Usual definition: for all $s_{1}, t_{1}, \ldots, s_{k}, t_{k} \geq 1$, let

$$
a_{i}:=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} A^{(N)^{s_{i}}}, \quad b_{i}:=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} B^{(N)^{t_{i}}}
$$

Then, asymptotic freeness \Leftrightarrow for any such choice,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \prod_{i=1}^{k}\left(A^{(N)^{s_{i}}}-a_{i} \boldsymbol{I}_{N}\right)\left(B^{(N)^{t_{i}}}-b_{i} \boldsymbol{I}_{N}\right)=0
$$

Asymptotic Freeness for Projections

Usual definition: for all $s_{1}, t_{1}, \ldots, s_{k}, t_{k} \geq 1$, let

$$
a_{i}:=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} A^{(N)^{s_{i}}}, \quad b_{i}:=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} B^{(N)^{t_{i}}}
$$

Then, asymptotic freeness \Leftrightarrow for any such choice,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \prod_{i=1}^{k}\left(A^{(N)^{s_{i}}}-a_{i} \boldsymbol{I}_{N}\right)\left(B^{(N)^{t_{i}}}-b_{i} \boldsymbol{I}_{N}\right)=0
$$

But for projections, by idempotence, enough to analyze one-parameter family of traces $s_{1}=t_{1}=\cdots=s_{k}=t_{k}=1$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr}\left(\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right)\right)^{k}=0
$$

Main Theorem 1 [Kㄴํ2]

$\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N \times N}$ random orthogonal projections with

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)}=\alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)}=\beta, \\
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr}\left(\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right)\right)^{k}=0 \text { for all } k \geq 1 .
\end{gathered}
$$

Main Theorem 1 [K '23]

$\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N \times N}$ random orthogonal projections with

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)}=\alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)}=\beta, \\
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr}\left(\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right)\right)^{k}=0 \text { for all } k \geq 1 .
\end{gathered}
$$

Then, we have convergence in moments: for all $k \geq 1$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr}\left(A^{(N)} B^{(N)} A^{(N)}\right)^{k}=\underset{\lambda \sim \mu_{\alpha, \beta}}{\mathbb{E}} \lambda^{k} .
$$

Main Theorem 1 [K'23]

$\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)} \in \mathbb{C}^{N \times N}$ random orthogonal projections with

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{A}^{(N)}=\alpha, \quad \lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr} \boldsymbol{B}^{(N)}=\beta, \\
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr}\left(\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right)\right)^{k}=0 \text { for all } k \geq 1 .
\end{gathered}
$$

Then, we have convergence in moments: for all $k \geq 1$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \operatorname{Tr}\left(A^{(N)} B^{(N)} A^{(N)}\right)^{k}=\underset{\lambda \sim \mu_{\alpha, \beta}}{\mathbb{E}} \lambda^{k} .
$$

Remarks:

- Straightforward application of free probability tools.
- Extended to weak convergence in probability or a.s.

Application: Random Subsets of Frames

Main Theorem 1 applies with:

- $\boldsymbol{A}^{(N)}$ diagonal, $A_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha)$,
- $\boldsymbol{B}^{(N)}=\frac{M}{N} \boldsymbol{V}^{(N)^{*}} \boldsymbol{V}^{(N)}$ for $\boldsymbol{V}^{(N)}=\left[\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{N}\right] \in \mathbb{C}^{M \times N}$
(deterministic!) tight frames having $\frac{M}{N} \rightarrow \beta \in(0,1)$ and

$$
\max _{i, j \in[N]}\left|\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle-\mathbb{1}\{i=j\}\right| \leq N^{-1 / 2+o(1)} .
$$

Application: Random Subsets of Frames

Main Theorem 1 applies with:

- $\boldsymbol{A}^{(N)}$ diagonal, $A_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha)$,
- $\boldsymbol{B}^{(N)}=\frac{M}{N} \boldsymbol{V}^{(N)^{*}} \boldsymbol{V}^{(N)}$ for $\boldsymbol{V}^{(N)}=\left[\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{N}\right] \in \mathbb{C}^{M \times N}$ (deterministic!) tight frames having $\frac{M}{N} \rightarrow \beta \in(0,1)$ and

$$
\max _{i, j \in[N]}\left|\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle-\mathbb{1}\{i=j\}\right| \leq N^{-1 / 2+o(1)}
$$

Answers signal processing and combinatorics questions:

- Proves conjecture of [Haikin, Zamir, Gavish '17]
- Simplifies [Mixon, Magsino, Parshall '21] (Paley frames)
- Simplifies [Farrell '11] (Fourier frames)

Application: Random Subsets of Frames

Main Theorem 1 applies with:

- $\boldsymbol{A}^{(N)}$ diagonal, $A_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha)$,
- $\boldsymbol{B}^{(N)}=\frac{M}{N} \boldsymbol{V}^{(N)^{*}} \boldsymbol{V}^{(N)}$ for $\boldsymbol{V}^{(N)}=\left[\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{N}\right] \in \mathbb{C}^{M \times N}$ (deterministic!) tight frames having $\frac{M}{N} \rightarrow \beta \in(0,1)$ and

$$
\max _{i, j \in[N]}\left|\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle-\mathbb{1}\{i=j\}\right| \leq N^{-1 / 2+o(1)}
$$

Answers signal processing and combinatorics questions:

- Proves conjecture of [Haikin, Zamir, Gavish '17]
- Simplifies [Mixon, Magsino, Parshall '21] (Paley frames)
- Simplifies [Farrell '11] (Fourier frames)
...with easy proof!

Proof Sketch

Just expand and bound naively:

$$
\begin{aligned}
& \frac{1}{N}\left|\mathbb{E} \operatorname{Tr}((\boldsymbol{A}-\alpha \boldsymbol{I})(\boldsymbol{B}-\beta \boldsymbol{I}))^{k}\right| \\
& \quad \leq \frac{1}{N} \sum_{i_{1}, \ldots, i_{k}=1}^{N}\left|\mathbb{E}\left[\left(A_{i_{1} i_{1}}-\alpha\right) \cdots\left(A_{i_{k} i_{k}}-\alpha\right)\right]\right| \\
& \left.\quad \mid B_{i_{1} i_{2}-\beta \mathbb{1}}-\beta i_{1}=i_{2}\right\}|\cdots| B_{i_{k} i_{1}}-\beta \mathbb{1}\left\{i_{k}=i_{1}\right\} \mid \\
& \quad \\
& \quad{ }_{k} N^{-1} \cdot \underbrace{N^{k / 2}} \cdot N^{-k / 2+o(1)} \\
& \quad \rightarrow 0 .
\end{aligned}
$$

Proof Sketch

Just expand and bound naively:

$$
\begin{aligned}
& \frac{1}{N}\left|\mathbb{E} \operatorname{Tr}((\boldsymbol{A}-\alpha \boldsymbol{I})(\boldsymbol{B}-\beta \boldsymbol{I}))^{k}\right| \\
& \quad \leq \frac{1}{N} \sum_{i_{1}, \ldots, i_{k}=1}^{N}\left|\mathbb{E}\left[\left(A_{i_{1} i_{1}}-\alpha\right) \cdots\left(A_{i_{k} i_{k}}-\alpha\right)\right]\right| \\
& \left.\quad \mid B_{i_{1} i_{2}-\beta \mathbb{1}}-\beta i_{1}=i_{2}\right\}|\cdots| B_{i_{k} i_{1}}-\beta \mathbb{1}\left\{i_{k}=i_{1}\right\} \mid \\
& \quad \leqq_{k} N^{-1} \cdot \underbrace{N^{k / 2}} \cdot N^{-k / 2+o(1)} \\
& \quad \rightarrow 0 .
\end{aligned}
$$

Previous work finds a "main term" and "error term" in $\frac{1}{N} \mathbb{E} \operatorname{Tr}(A B A)^{k}$ directly, redoing free probability by hand.

Aside: Free Probability with "Less Randomness"

> Classical results (Voiculescu et al.) treat "very random" models: $\boldsymbol{A}, \boldsymbol{B}$ unitarily invariant projections, i.e., to uniformly random subspaces of \mathbb{C}^{N}.

Aside: Free Probability with "Less Randomness"

> Classical results (Voiculescu et al.) treat "very random" models: $\boldsymbol{A}, \boldsymbol{B}$ unitarily invariant projections, i.e., to uniformly random subspaces of \mathbb{C}^{N}.

This line of work: the same freeness and spectral limits hold for much less random models (e.g., \boldsymbol{B} deterministic and \boldsymbol{A} diagonal).

Aside: Free Probability with "Less Randomness"

Classical results (Voiculescu et al.) treat "very random" models: $\boldsymbol{A}, \boldsymbol{B}$ unitarily invariant projections, i.e., to uniformly random subspaces of \mathbb{C}^{N}.

This line of work: the same freeness and spectral limits hold for much less random models (e.g., \boldsymbol{B} deterministic and \boldsymbol{A} diagonal).

Companion work [K'23]: some cases where the same limits hold for completely deterministic models, e.g., built on the Paley frames and Paley graph of number theory.

Asymptotic Freeness in Paley Graphs

G_{p} a graph on vertices $\mathbb{Z} / p \mathbb{Z}($ with $p \equiv 1 \bmod 4)$ with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i \equiv x^{2}\right)$.
G_{p} is strongly regular; fits in previous framework.

Asymptotic Freeness in Paley Graphs

G_{p} a graph on vertices $\mathbb{Z} / p \mathbb{Z}($ with $p \equiv 1 \bmod 4)$ with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i \equiv x^{2}\right)$.
G_{p} is strongly regular; fits in previous framework.

Theorem: [K '23] The associated projection \boldsymbol{B} is asymptotically free of coordinate projections \boldsymbol{A}_{S} for any

$$
S=\left\{j: j \sim i \text { in } G_{p}\right\}=\text { "neighborhood of } i \text { ". }
$$

So, e.s.d. $\rightarrow \mu_{1 / 2,1 / 2}=$ arcsine law. (Partial generalization to other "low-degree" sets S.)

Asymptotic Freeness in Paley Graphs

G_{p} a graph on vertices $\mathbb{Z} / p \mathbb{Z}($ with $p \equiv 1 \bmod 4)$ with $i \sim j$ iff $j-i$ is a square $\bmod p\left(\right.$ for some $\left.x \neq 0, j-i \equiv x^{2}\right)$.
G_{p} is strongly regular; fits in previous framework.

Theorem: [K '23] The associated projection \boldsymbol{B} is asymptotically free of coordinate projections \boldsymbol{A}_{S} for any

$$
S=\left\{j: j \sim i \text { in } G_{p}\right\}=\text { "neighborhood of } i \text { ". }
$$

So, e.s.d. $\rightarrow \mu_{1 / 2,1 / 2}=$ arcsine law. (Partial generalization to other "low-degree" sets S.)

Moral: Freeness does not require probability!

III. The Largest Eigenvalue

Conjecture and Difficulties

Natural extension of previous results:
Edge Conjecture: For many $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ with e.s.d. of $\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}$ converging weakly to $\mu_{\alpha, \beta}$,

$$
\lambda_{\max }\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right) \xrightarrow{(\mathrm{p})} \text { edge }(\alpha, \beta):=\text { right edge of } \mu_{\alpha, \beta} .
$$

Conjecture and Difficulties

Natural extension of previous results:
Edge Conjecture: For many $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ with e.s.d. of $\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}$ converging weakly to $\mu_{\alpha, \beta}$,

$$
\lambda_{\max }\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right) \xrightarrow{(\mathrm{p})} \text { edge }(\alpha, \beta):=\text { right edge of } \mu_{\alpha, \beta} .
$$

As in models from classical random matrix theory (e.g., Wigner and Wishart), the difficulty is in controlling moments of diverging order:

$$
\mathbb{E} \operatorname{Tr}\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right)^{k} \stackrel{?}{\leq}(\operatorname{edge}(\alpha, \beta)+o(1))^{k}
$$

for $k \gg \log (N)$.

Main Theorem 2

For $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ as in Main Theorem 1, suppose additionally that one of α or β is $\frac{1}{2}$ and that for $k=k(N) \gg \log (N)$,

$$
\max _{1 \leq a \leq k}\left|\mathbb{E} \operatorname{Tr}\left(\frac{\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}}{\sqrt{\alpha(1-\alpha)}} \frac{\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}}{\sqrt{\beta(1-\beta)}}\right)^{a}\right| \leq \exp (o(k)) .
$$

Then,

$$
\lambda_{\max }\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right) \xrightarrow{(\mathrm{p})} \operatorname{edge}(\alpha, \beta) .
$$

Main Theorem 2

For $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ as in Main Theorem 1, suppose additionally that one of α or β is $\frac{1}{2}$ and that for $k=k(N) \gg \log (N)$,

$$
\max _{1 \leq a \leq k}\left|\mathbb{E} \operatorname{Tr}\left(\frac{\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}}{\sqrt{\alpha(1-\alpha)}} \frac{\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}}{\sqrt{\beta(1-\beta)}}\right)^{a}\right| \leq \exp (o(k)) .
$$

Then,

$$
\lambda_{\max }\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right) \xrightarrow{(\mathrm{p})} \operatorname{edge}(\alpha, \beta) .
$$

Similar idea to Main Theorem 1: isolate an error term, which should be easier to control than $\operatorname{Tr}\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right)^{k}$.

Main Theorem 2

For $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ as in Main Theorem 1, suppose additionally that one of α or β is $\frac{1}{2}$ and that for $k=k(N) \gg \log (N)$,

$$
\max _{1 \leq a \leq k}\left|\mathbb{E} \operatorname{Tr}\left(\frac{\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}}{\sqrt{\alpha(1-\alpha)}} \frac{\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}}{\sqrt{\beta(1-\beta)}}\right)^{a}\right| \leq \exp (o(k))
$$

Then,

$$
\lambda_{\max }\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right) \xrightarrow{(\mathfrak{p})} \operatorname{edge}(\alpha, \beta) .
$$

Similar idea to Main Theorem 1: isolate an error term, which should be easier to control than $\operatorname{Tr}\left(\boldsymbol{A}^{(N)} \boldsymbol{B}^{(N)} \boldsymbol{A}^{(N)}\right)^{k}$.

Conjecture: Extra condition on α, β not necessary.
Seems just a technical challenge-stay tuned for details.

Main Theorem 2: Intuition

Why do these normalizations appear?

$$
\widehat{\boldsymbol{A}}:=\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right) / \sqrt{\alpha(1-\alpha)}, \quad \hat{\boldsymbol{B}}:=\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right) / \sqrt{\beta(1-\beta)}
$$

Main Theorem 2: Intuition

Why do these normalizations appear?

$$
\hat{\boldsymbol{A}}:=\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right) / \sqrt{\alpha(1-\alpha)}, \quad \hat{\boldsymbol{B}}:=\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right) / \sqrt{\beta(1-\beta)}
$$

Normalization whitens the spectrum: if $\lambda_{i}\left(\boldsymbol{A}^{(N)}\right) \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha)$ and $\lambda_{i}\left(\boldsymbol{B}^{(N)}\right) \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\beta)$, then

$$
\begin{array}{r}
\mathbb{E} \boldsymbol{\lambda}_{i}(\hat{\boldsymbol{A}})=\mathbb{E} \boldsymbol{\lambda}_{i}(\widehat{\boldsymbol{B}})=0, \\
\mathbb{E} \boldsymbol{\lambda}_{i}(\hat{\boldsymbol{A}})^{2}=\mathbb{E} \boldsymbol{\lambda}_{i}(\widehat{\boldsymbol{B}})^{2}=1 .
\end{array}
$$

$m \widehat{A}, \widehat{B}$ are orthogonal in expectation.

Main Theorem 2: Intuition

Why do these normalizations appear?
$\hat{\boldsymbol{A}}:=\left(\boldsymbol{A}^{(N)}-\alpha \boldsymbol{I}_{N}\right) / \sqrt{\alpha(1-\alpha)}, \quad \hat{\boldsymbol{B}}:=\left(\boldsymbol{B}^{(N)}-\beta \boldsymbol{I}_{N}\right) / \sqrt{\beta(1-\beta)}$
Normalization whitens the spectrum: if $\lambda_{i}\left(\boldsymbol{A}^{(N)}\right) \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha)$ and $\lambda_{i}\left(\boldsymbol{B}^{(N)}\right) \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\beta)$, then

$$
\begin{array}{r}
\mathbb{E} \boldsymbol{\lambda}_{i}(\hat{\boldsymbol{A}})=\mathbb{E} \boldsymbol{\lambda}_{i}(\widehat{\boldsymbol{B}})=0, \\
\mathbb{E} \boldsymbol{\lambda}_{i}(\hat{\boldsymbol{A}})^{2}=\mathbb{E} \boldsymbol{\lambda}_{i}(\widehat{\boldsymbol{B}})^{2}=1 .
\end{array}
$$

$\leadsto \hat{A}, \widehat{B}$ are orthogonal in expectation. Actually orthogonal matrices would indeed satisfy

$$
\left|\operatorname{Tr}(\hat{\boldsymbol{A}} \widehat{\boldsymbol{B}})^{k}\right| \leq N=\exp (o(k))
$$

Proof Ideas for Main Theorem 2

Exact relation between centered and uncentered moments by "trace rewriting" using idempotence:

$$
\begin{aligned}
& \operatorname{Tr}\left(\left(\boldsymbol{A}-\alpha \mathbf{I}_{N}\right)\left(\boldsymbol{B}-\beta \boldsymbol{I}_{N}\right)\right)^{k} \\
& \quad=w \operatorname{Tr}\left(\boldsymbol{I}_{N}\right)+x \operatorname{Tr}(\boldsymbol{A})+y \operatorname{Tr}(\boldsymbol{B})+\sum_{\ell=1}^{k} z_{\ell} \operatorname{Tr}(\boldsymbol{A B} \boldsymbol{A})^{\ell} .
\end{aligned}
$$

Proof Ideas for Main Theorem 2

Exact relation between centered and uncentered moments by "trace rewriting" using idempotence:

$$
\begin{aligned}
& \operatorname{Tr}\left(\left(\boldsymbol{A}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}-\beta \boldsymbol{I}_{N}\right)\right)^{k} \\
& \quad=w \operatorname{Tr}\left(\boldsymbol{I}_{N}\right)+x \operatorname{Tr}(\boldsymbol{A})+y \operatorname{Tr}(\boldsymbol{B})+\sum_{\ell=1}^{k} z_{\ell} \operatorname{Tr}(\boldsymbol{A} \boldsymbol{B} \boldsymbol{A})^{\ell} .
\end{aligned}
$$

Inverting this, the "main term" is the limiting MANOVA moment:

$$
\left.\begin{array}{rl}
\operatorname{Tr}(\boldsymbol{A} \boldsymbol{B} \boldsymbol{A})^{k}=N & \underset{\lambda \sim \mu_{\alpha, \beta}}{\mathbb{E}} \lambda^{k}
\end{array}+x^{\prime}(\operatorname{Tr}(\boldsymbol{A})-\alpha N)+y^{\prime}(\operatorname{Tr}(\boldsymbol{B})-\beta N)\right) .
$$

Proof Ideas for Main Theorem 2

First result: an explicit recursion for the moment errors

$$
\begin{aligned}
\Delta_{k} & =\operatorname{Tr}(\boldsymbol{A} \boldsymbol{B} \boldsymbol{A})^{k}-N \underset{\lambda \sim \mu_{\alpha, \beta}}{\mathbb{E}} \lambda^{k} \\
& \approx \sum_{\ell=1}^{k-1} c_{k, \ell} \Delta_{\ell}+c_{k}^{\prime} \operatorname{Tr}\left(\left(\boldsymbol{A}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}-\beta \boldsymbol{I}_{N}\right)\right)^{k}
\end{aligned}
$$

Still not easy to analyze for large $k . .$.

Proof Ideas for Main Theorem 2

First result: an explicit recursion for the moment errors

$$
\begin{aligned}
\Delta_{k} & =\operatorname{Tr}(\boldsymbol{A} \boldsymbol{B} \boldsymbol{A})^{k}-N \underset{\lambda \sim \mu_{\alpha, \beta}}{\mathbb{E}} \lambda^{k} \\
& \approx \sum_{\ell=1}^{k-1} c_{k, \ell} \Delta_{\ell}+c_{k}^{\prime} \operatorname{Tr}\left(\left(\boldsymbol{A}-\alpha \boldsymbol{I}_{N}\right)\left(\boldsymbol{B}-\beta \boldsymbol{I}_{N}\right)\right)^{k}
\end{aligned}
$$

Still not easy to analyze for large $k . .$.

Saving grace: if α or β is $\frac{1}{2}$, can solve this recursion in closed form!

Identify Riordan arrays in recursion: triangular matrices with special generating functions allowing formal inversion.

"Application:" New Proof for Invariant Model

New, arguably more robust, proof of edge limit theorem for $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ unitarily invariant projections.

"Application:" New Proof for Invariant Model

New, arguably more robust, proof of edge limit theorem for $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ unitarily invariant projections.

Model equivalent to:
A diagonal with $A_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha)$,
\boldsymbol{D} diagonal with $D_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\beta)$,

$$
\begin{aligned}
& \boldsymbol{U} \sim \operatorname{Haar}(\mathcal{U}(N)), \\
& \boldsymbol{B}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*} .
\end{aligned}
$$

"Application:" New Proof for Invariant Model

New, arguably more robust, proof of edge limit theorem for $\boldsymbol{A}^{(N)}, \boldsymbol{B}^{(N)}$ unitarily invariant projections.

Model equivalent to:

$$
\begin{aligned}
& \text { A diagonal with } A_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\alpha) \text {, } \\
& \boldsymbol{D} \text { diagonal with } D_{i i} \stackrel{\text { iid }}{\sim} \operatorname{Ber}(\beta) \text {, } \\
& \boldsymbol{U} \sim \operatorname{Haar}(\mathcal{U}(N)), \\
& \boldsymbol{B}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{*} \text {. }
\end{aligned}
$$

Proof: expand; use non-asymptotic bounds for Weingarten function [Collins, Matsumoto '17] to control moments

$$
\mathbb{E}\left[U_{i_{1} j_{1}} \cdots U_{i_{k} j_{k}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \cdots \overline{U_{i_{k^{\prime}}^{\prime} j_{k^{\prime}}^{\prime}}}\right]
$$

Obstacles to General Models

Consider same \boldsymbol{A} but \boldsymbol{B} deterministic (like in frame application) and real symmetric.

Obstacles to General Models

Consider same \boldsymbol{A} but \boldsymbol{B} deterministic (like in frame application) and real symmetric.

No expectation over \boldsymbol{B}; expanding traces leads to trying to analyze "graphical moments" of \boldsymbol{B} :

From a graph $G=([k], E)$ and $\boldsymbol{B} \in \mathbb{R}_{\text {sym }}^{N \times N}$, compute

$$
\sum_{i_{1}, \ldots, i_{k} \in[N]} \prod_{\text {distinct }} B_{\{a, b\} \in E} B_{i_{a} i_{b}} .
$$

Scalar version of graph matrices appearing in literature on sum-of-squares optimization.

Techniques to analyze for general G and deterministic B ?

Paley Graphs Revisited

Numerical experiments $\leadsto \leadsto$ Edge Conjecture should hold for Paley graph construction.

Paley Graphs Revisited

Numerical experiments $\leadsto \Delta$ Edge Conjecture should hold for Paley graph construction.

Proof would probably require intricate analysis of character sums (\approx graphical moments in ± 1 adjacency matrix).

Paley Graphs Revisited

Numerical experiments $\leadsto s$ Edge Conjecture should hold for Paley graph construction.

Proof would probably require intricate analysis of character sums (\approx graphical moments in ± 1 adjacency matrix).

But, by enhanced spectral bound on clique number, would yield progress on long-standing open problem:

Conjecture: Largest clique in G_{p} is $O(\operatorname{polylog}(p))$.
Best known upper bound: Largest clique in G_{p} is $\leq \sqrt{p / 2}$.

Paley Graphs Revisited

Numerical experiments $\leadsto \Delta$ Edge Conjecture should hold for Paley graph construction.

Proof would probably require intricate analysis of character sums (\approx graphical moments in ± 1 adjacency matrix).

But, by enhanced spectral bound on clique number, would yield progress on long-standing open problem:

Conjecture: Largest clique in G_{p} is $O(\operatorname{polylog}(p))$.
Best known upper bound: Largest clique in G_{p} is $\leq \sqrt{p / 2}$.
Theorem: [K'23] If Edge Conjecture holds for Paley graph construction, then largest clique in G_{p} is $\leq o(\sqrt{p})$.

Open Questions

Open Questions

- Prove $\lambda_{\text {max }}$ limit theorem for any non-invariant model.
- Invariant model with discrete Fourier matrix instead of \boldsymbol{U} : unsolved since [Farrell '11].
- Deterministic subsets of Paley frames \Rightarrow improved bounds for clique number of Paley graph.

Open Questions

- Prove $\lambda_{\text {max }}$ limit theorem for any non-invariant model.
- Invariant model with discrete Fourier matrix instead of \boldsymbol{U} : unsolved since [Farrell '11].
- Deterministic subsets of Paley frames \Rightarrow improved bounds for clique number of Paley graph.
- Other universal features:
- Local laws and spacing? [Farrell, Nadakuditi '15]
- Rate of convergence of e.s.d.?

Open Questions

- Prove $\lambda_{\text {max }}$ limit theorem for any non-invariant model.
- Invariant model with discrete Fourier matrix instead of \boldsymbol{U} : unsolved since [Farrell '11].
- Deterministic subsets of Paley frames \Rightarrow improved bounds for clique number of Paley graph.
- Other universal features:
- Local laws and spacing? [Farrell, Nadakuditi '15]
- Rate of convergence of e.s.d.?
- Adapt to analyze RIP (all small submatrices)?

Thank you!

