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1 Preliminaries

1.1 Notation

• Two random variables X,Y with the same law will be said to satisfy the equivalence relation X ∼ Y .

• N (µ,σ2) will always denote a random variable that is normally distributed with mean µ and vari-

ance σ2. Some useful elementary bounds on the standard normal distribution that will be used

throughout are collected in Section 8.1.

• The minimum of two numbers x and y is denoted x ∧y , and the maximum x ∨y .

• The weak convergence or convergence in distribution of a sequence of random variable will be

denoted Xn ⇒ X. The portmanteau theorem gives many useful equivalent characterizations of this

convergence [2, Theorem 3.25].

1.2 Overview of Stochastic Processes

Definition. A (Rd-valued) stochastic process X is a collection of random variables {Xt}t∈T taking

values in Rd, defined on an underlying probability space (Ω,F ,P). T is a totally ordered index set

usually interpreted as time; we typically deal with continuous one-sided time, T = [0,∞). We will

use one of two equivalent notations for the random variable the process takes at each time, either

Xt or X(t); the interpretation of each is given below.

In the most basic sense, X is then just a function X : T × Ω → Rd. The slice of this function for a

fixed t ∈ T is, as described above, a random variable denoted Xt = X(t, ·) : Ω → Rd. Alternatively,

the slice for a fixed ω ∈ Ω is a sample path, a function X(·,ω) : T → Rd representing a single

possible path “traced out” by the process in Rd over all time. When we use the notation X(t),
we are suggesting that X be thought of as its sample path. With the probability measure P on Ω,

the stochastic process then represents from this perspective a probability measure on the space of

functions f : T → Rd. Thus, a stochastic process has two rather different interpretations:

1. X is a time-evolving family of Rd-valued random variables Xt , or the induced time-evolving

probability measure on Rd. Here, X is similar to a diffusion in physics: often we impose a

condition such as X0 = 0 deterministically (so that the measure induced by X0 is the Dirac

measure concentrated at the origin), and as t increases, the measure “relaxes” into Rd.

2. X is a random function T → Rd (or even more time-agnostically, a random curve in Rd when

time is continuous), or the induced probability measure on the space of such functions. This

perspective is more amenable to questions about the global geometry of the sample path.

We will usually be more interested in the latter interpretation to study global properties (we can

define amounts of time spent in domains, hitting and exit times, integrals against the sample path,

etc). When we refer to the “distribution of X” or “law of X”, we mean the probability measure on

this function space. We define several notions of equivalence on processes.

Definition. Processes X,Y are versions of each other if P{Xt = Yt} = 1 for all t. They are almost

versions if this holds for almost all t (in the Lebesgue sense).
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Many of the interesting properties of a stochastic process are properties of its samples at finitely

many time points, which we formalize in the following way.

Definition. The finite-dimensional distributions of a process X are the distributions of the finite

vectors (Xt1 , . . . , Xtn) for any collection of ti ∈ T .

By the following theorem, these distributions completely specify the distribution of a stochastic

process (a proof of this technical fact can be found in [2, p. 25]).

Theorem 1.1. Two Rd-valued stochastic processes X,Y have the same distribution if and only if

they have the same finite-dimensional distributions.

This justifies the following finitary definition of independence of processes.

Definition. Processes X,Y are independent if any finite vectors (Xt1 , . . . , Xtn) and (Ys1 , . . . , Ysm) are

independent for ti, sj ∈ T .

One property of a process that is not definable in this way is continuity, where we impose the

requirement of continuity on the entire sample path at once.

Definition. A process X is continuous if its sample paths are almost surely (with respect to the

measure on functions T → Rd induced by the process) continuous.

We usually informally assume that an almost-sure property like this holds with certainty, just by

restricting the underlying probability space to the almost sure set. The following is a useful basic

theorem on continuity, a proof can be found in [2, p. 35].

Theorem 1.2 (Kolmogorov continuity criterion). Let X be a random process, and suppose that for

any time T > 0, there are constants α,β,K > 0 so that

E[|Xt −Xs|α] ≤ K|t − s|1+β

for all 0 ≤ s, t ≤ T . Then, there is a continuous version of X.

These properties and the theorems describing them will be useful for seeing why the axioms for

Brownian motion specify a unique process (in terms of distribution).

A last relevant class of stochastic processes is defined below, the direct generalization to the

continuous setting of the definition of Gaussian random vectors.

Definition. A process X is Gaussian if for any times t1, . . . , tn the vector (Xt1 , . . . , Xtn) is a Gaussian

random vector (a property which has many explicit characterizations, the most useful for us will

be that for any ci ∈ R, the random variable c1Xt1 + · · · + cnXtn is Gaussian). A standard theorem

[2, Lemma 11.1] gives that the distribution of a Gaussian process is completely determined by the

means E[Xs] and covariances Cov[Xs , Xt].

1.3 Filtrations and Stopping Times

We also want an abstract means of defining “making decisions” on the basis of what has been seen

of a stochastic process up to a certain time. For instance, in the classical example of the process
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representing a gambler’s wealth while playing repeated rounds of a game, we want to delineate

the information available to a gambler after N rounds of play, from which he decides whether to

continue playing or to stop.

Definition. Given a probability space (Ω,F ,P), a filtration of the space is a time-indexed family

F(t) of σ -algebras on Ω so that F(s) ⊆ F(t) ⊆ F for s < t. A stochastic process X(t) defined on a

space with a filtration F(t) is called adapted to the filtration if X(t) is F(t)-measurable for each t.

Note that given a stochastic process X(t), letting F(t) be the σ -algebra generated by the random

variables X(s) for 0 ≤ s ≤ t gives a filtration to which X(t) is immediately adapted, which we

denote F0
X(t), omitting the subscript if the process is clear from context. This filtration represents

the events whose occurrence or non-occurrence can be determined by observing the process up to

time t. We can also define a slightly larger filtration,

F+(t) =
⋂
s>t
F0(t) =

⋂
s>t
F+(t),

allowing events that are determined by observing the process to any t + ε where ε > 0 (the latter

expression above is equivalent, and represents the important property of right continuity that the

F+ filtration possesses but F0 does not). Some events belonging to F+(t) but not F0(t) are con-

tinuity, differentiability, and monotonicity of the sample path at time t, because all of these can be

determined by looking at the sample path on an arbitrarily small open interval around t.
We additionally consider the notion of a time-valued random variable T whose distribution does

not “run ahead” of F(t): whether or not T ≤ t can be determined by the information in F(t).

Definition. A random variable T taking values in [0,∞] defined on a probability space filtered by

F(t) is called a stopping time with respect to F(t) if {T ≤ t} ∈ F(t) for each t ≥ 0.

In the example of the gambler playing a repeated game, a stopping time corresponds to a gambler’s

strategy: the only decision he makes at every round is whether to stop or continue, and he only has

the information of the outcomes up to that round in order to make this decision. Thus, proving

statements about arbitrary stopping times can usually be interpreted as making certain guarantees

about the efficacy of any such strategy.

Example. It is easy to check some initial intuitive examples of stopping times, taking care to distin-

guish between which are adapted to F0 versus F+.

1. Any deterministic time T = t0 is a stopping time with respect to any filtration.

2. Any stopping time with respect to F0
X(t) is a stopping time with respect to F+X (t), since

F0
X(t) ⊂ F+X (t).

3. If X(t) is a continuous stochastic process and C is a closed set, then the hitting time of C ,

given by HC = inf{t ≥ 0 : X(t) ∈ H}, is a stopping time with respect to F0
X(t): X(HC) ∈ C ,

because the path B(t) is continuous and C is a closed set, so X(HC) is a limit point of points

in C , and thus is in C . Thus, up to a set of measure zero, the event {HC ≤ t} is just the event

{X(s) ∈ C for some s ∈ [0, t]} ∈ F0
X(t).
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4. If U is an open set, then HU is a stopping time with respect to F+X (t) but not F0
X(t). The first

claim follows by using the continuity of X(t) and the right continuity of F+:

F+(t) =
⋂
ε>0

F+(t + ε).

A counterexample for the second claim can be easily derived from the Brownian motion we

will define, but is intuitively clear: X(HU) is a limit point of U but may not belong to U , and

the sample path can with positive probability either enter U or “turn away from” U .

Since hitting times are one of our basic objects of study (as are open sets), we will typically use

F+X (t) as the main filtration for stopping times, rather than F0
X(t). Once we define the standard

Brownian motion B(t), all filtrations unless explicitly defined otherwise will be F+B (t), and a process

will simply be called adapted if it is adapted to this filtration.

This allows us to use a slightly weaker definition of a stopping time.

Proposition 1.3. If T is a time-valued random variable with {T < t} ∈ F(t) for each t ≥ 0, and F(t)
is right-continuous, then T is a stopping time.

Proof. We have

{T ≤ t} =
∞⋂
n=1

{
T < t + 1

n

}
∈

∞⋂
n=1

F
(
t + 1

n

)
= F(t).

A last useful property of stopping times is that they satisfy a simple convergence theorem.

Proposition 1.4. If Tn ↗ T is an increasing sequence of stopping times with respect to a filtration,

then T is a stopping time with respect to the same filtration.

Proof. We have

{T ≤ t} =
∞⋂
n=1

{Tn ≤ t}

where each term in the intersection belongs to the filtration.

The main intuitive guideline we will follow about stopping times is that when we can show some

property for a family of processes for deterministic times, the same property usually also holds

(with more work) for stopping times in place of deterministic times (see the weak/strong Markov

properties, and the optional stopping theorem).

2 Introduction

2.1 Motivation: A Functional Central Limit Theorem

In probability theory, a basic object of study is the discrete random walk defined by Sn =
∑n
i=1Xi,

where the Xi are i.i.d random variables with (after normalization) mean 0 and variance 1. The

global or limiting behavior of such walks is of particular importance; the central limit theorem, for

instance, is the statement that 1√
nSn ⇒ N (0,1), the remarkable aspect of the theorem being that

the limiting distribution does not depend on the initial distribution of the Xi (we call this sort of

behavior universality or universal convergence.
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However, it is easy to empirically verify that such universal limiting behavior is exhibited for

many different properties of Sn. For instance, some numerical experimentation readily yields all of

the following observations.

1. The central limit theorem: 1√
nSn universally converges in distribution toN (0,1).

2. The maximum Mn = max1≤i≤n Si converges universally when normalized to Mn√
n . By consider-

ing just the simple random walk and performing the necessary combinatorics [1, Section 3.10],

it is straightforward to see that this limiting distribution is that of |N (0,1)|.

3. The proportion of time spent on positive numbers, Pn = 1
n#{i : 1 ≤ i ≤ n, Si > 0}, converges

universally to an arcsine distribution (for the simple random walk, this is the classical first

arcsine law).

To see more clearly what the connection between these limit theorems is, we must shift to continuous-

time representations of Sn, so that we can treat them as random functions on a real interval. To

that end, we first interpolate linearly between the discrete points S(n) to construct a random path

that is given by a continuous stochastic process:

S(t) = Sbtc + (t − btc)(Sbtc+1 − Sbtc).

Then, we scale larger and larger portions of the trajectory of S(t) into the interval [0,1], defining

S∗n (t) = 1√
nS(nt) on t ∈ [0,1]. So, we have S∗n as a random function on [0,1] is continuous, and

hence belongs to C([0,1]) (which we make into a metric space by giving it the supremum or L∞

norm). The central limit theorem can then be stated as S∗n (1) ⇒N (0,1), the maximum operator is

then the continuous supremum operator Mn = supt∈[0,1] S∗n (t), and the proportion of time spent

above the x-axis is a Lebesgue measure, m({t : t ∈ [0,1], S∗n (t) > 0}).
In general, most of the interesting properties of the random walks that can be encoded into a

single real number can be realized as functionals, or mappings Λ : C([0,1])→ R, applied to S∗n . Note

that those mentioned above, and most functionals that arise from combinatorial considerations on

the underlying discrete random walks, are also continuous with respect to the supremum norm

metric given to C([0,1]) above.

Now, suppose that the S∗n had a limit in distribution; that is, that there existed some stochastic

process B so that, in terms of their distributions on C([0,1]), we have S∗n ⇒ B. This would imply by

the portmanteau theorem that for any bounded continuous functional Λ : C([0,1])→ R, we have

E[Λ(S∗n )]→ E[Λ(B)].

Now, since for any bounded continuous h : R→ R we have that h ◦Λ is also continuous whenever Λ
is just continuous, we have

E[h(Λ(S∗n ))]→ E[h(Λ(B))],

and thus Λ(S∗n )⇒ Λ(B) as R-valued random variables for any continuous functional Λ.

If the limiting process B were independent of the distributions of the original Xi, then we would

have a unified explanation of the many limit theorems applying to random walks: any continuous

functional of the (linear interpolation of) the discrete random walk would converge universally in

distribution to the same functional of B. We will later prove that this is indeed the case in Donsker’s

invariance principle (also called the functional central limit theorem), but for now we can first easily

isolate some of the basic properties of this hypothetical limit process.

5



Proposition 2.1. If S∗n ⇒ B, then the process {Bt} satisfies the following:

1. B0 = 0.

2. The differences Bt − Bs , called the increments of B, satisfy that for any t0 < · · · < tn, the n
random variables Btk − Btk−1 with 1 ≤ k ≤ n are jointly independent.

3. The increments are normally distributed: Bt − Bs ∼N (0, t − s) when t ≥ s.

4. B is a continuous process.

Proof. Property (1) is immediate, since S0 = 0. For (2) and (3), note that B(t)− B(s) is converged on

in distribution by

1√
n

(
Sbntc + (nt − bntc)(Sbntc+1 − Sbntc)− Sbnsc − (ns − bnsc)(Sbnsc+1 − Sbnsc)

)
,

And since the inner terms other than Sbntc − Sbnsc are bounded in magnitude, their contribution

tends to zero (because of the 1√
n factor), so B(t)− B(s) is converged on in distribution by

1√
n
(Sbntc − Sbnsc) =

1√
n

∑
ns<i≤nt

Xi.

By the central limit theorem, this converges in law toN (0, t − s), giving (3). For (2), we note that Xi
in the sums as above for disjoint intervals (s, t) are disjoint, so since the Xi are independent, the

increments are jointly independent. Property (4) follows from the Kolmogorov continuity criterion,

taking α = 4, β = 1, and K = 2.

In particular, we have Bt ∼ N (0, t) for all t, by taking the increment starting at B0 = 0. We can

refine this description slightly by characterizing Brownian motion as a Gaussian process.

Proposition 2.2. B is a Gaussian process, with means and covariances given by

E[Bti] = 0 and Cov[Bti , Btj] =min(ti, tj).

Proof. By the characterization given earlier, to show that B is Gaussian it suffices to show that any

linear combination of the components Bt1 , . . . , Btn is Gaussian in distribution. To do this, we take

advantage of the independent increments: let ai ∈ R, and define t0 = 0 so that Bt0 = 0, then by a

simple summation-by-parts type manipulation we find:

n∑
k=1

akBtk =
n∑
k=1

 n∑
i=k
an

 (Btk − Btk−1),

which by independent increments is a sum of independent Gaussians, and hence is itself Gaussian.
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So, it remains to calculate the covariances. Let s ≤ t, then E[Bs] = E[Bt] = 0, so

Cov[Bs , Bt] = E[BsBt]

= E[Bs · (Bt − Bs + Bs)]
= E[Bs · (Bt − Bs)]+ E[B2

s ]

= E[Bs] · E[Bt − Bs]+ Var[Bs]

= Var(Bs)

= s,

where we have used that Bs and Bt − Bs are independent increments.

Note that this statement is thus equivalent to the first three properties in the previous proposi-

tion. We will use either of these equivalent characterizations to define a Brownian motion.

Definition. Any real-valued stochastic process {Bt} that is a continuous and Gaussian with means of

E[Bt] = 0 and covariances of Cov[Bs , Bt] =min(s, t) is called a (one-dimensional) standard Brownian

motion, or a Brownian motion started at x if the means are instead identically some other x ∈ R.

Of course, this leaves open the two key issues of existence and uniqueness: we have yet to

exhibit an actual Brownian motion, nor have we shown that the distribution the Brownian motion

induces (the measure on the space C([0,1])) is unique.

Uniqueness is straightforward: the Gaussian process characterization of Brownian motion spec-

ifies the finite-dimensional distributions of B, so by Theorem 1.1, it follows that all standard Brow-

nian motions have the same distribution.

Existence is more difficult: it is possible to take a mostly abstract approach, first proving the

existence of a suitable Gaussian process by the Kolmogorov consistency theorem, and then ap-

plying the Kolmogorov continuity criterion to show that this has a continuous version; this is the

approach taken in [2, Theorem 11.5]. It is also possible to construct this process directly, essen-

tially constructing the scaling limit of some particular discrete random walk as described above;

this is presented in [3, Theorem 1.3]. We will for our purposes assume the existence of a standard

Brownian motion.

2.2 Brownian Motion in Rd

We define the Brownian motion on Rd by B(t) = (B1(t), . . . , Bd(t)), where the coordinates Bi(t) are

independent one-dimensional standard Brownian motions. It is an easy exercise to verify that the

higher-dimensional analog of the independence and distribution of increments (they will now be

Gaussian vectors instead of just one-dimensional Gaussian distributions) conditions are equivalent

to this characterization.

3 Basic Symmetries and Bounds

The simplest symmetry of Brownian motion is analogous to the scaling symmetry of the normal

distribution, 1
aN (0, a2) ∼N (0,1).
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Proposition 3.1 (Scaling Invariance). Suppose B(t) is a standard Brownian motion and let a > 0.

Then, the process X(t) = 1
aB(a

2t) is also a standard Brownian motion.

Proof. All properties but the distribution of the increments are not affected by the transformation.

So, it suffices to check that X(t)− X(s) = 1
a(B(a

2t)− B(a2s)) is normally distributed with mean 0

and variance t − s, which is immediate by linearity of expectation and because B(a2t)− B(a2s) has

variance a2t − a2s.

This can be seen as a statement of the self-similarity of Brownian motion: the distribution of B(t)
on any time interval t ∈ [0, x) for x > 0 is sufficent to determine the distribution over arbitrarily

large spans of time.

We can in passing flesh out the analogy between standard Brownian motion and the standard

normal distribution: if we define the transformation F : S(t) , 1
2S(4t) on some vector space of

stochastic processes containing B(t), we have that B(t) is a fixed point of F . The convergence

under scaling of discrete random walks to B(t) under Donsker’s invariance principle can then be

interpreted as a convergence result for iteration of this map. This is the analog for processes of the

transformation X , 1
2(X

(1) + X(2) + X(3) + X(4)) (where X(i) are independent copies of X) on the

Hilbert space of L2 random variables converging toN (0,1) by the central limit theorem.

Another basic invariance property is unique to the time-dependent setting of processes, and

is correspondingly more powerful, giving that the behavior of B(t) on [0, x) actually is enough to

determine the behavior of B(t) on ( 1
x ,∞), and in particular the asymptotic behavior at infinity.

Proposition 3.2 (Time Inversion). Suppose B(t) is a standard Brownian motion, then the process

X(t) =
{

0 t = 0,
tB(t−1) t > 0

is also a standard Brownian motion.

Proof. It is immediate that X(t) is a Gaussian process, and that for a finite vector (X(t1), . . . , X(tn)),
the coordinate means are zero. The covariances are

Cov[X(t + h),X(t)] = t(t + h)Cov
[
B
(

1
t + h

)
, B
(

1
t

)]
= t(t + h) 1

t + h = t,

so X(t) is a Gaussian process with the same statistics as B(t).
It remains to show that X(t) is continuous. Continuity of X(t) is immediate when t > 0 by

continuity of B(t), so it suffices to consider t = 0. Continuity at t = 0 is equivalent to the limit

limt→0X(t) = 0. Equivalently, we want limt→0 tB(1
t ) = limt→∞

1
t B(t) = 0.

Fix ε > 0, and consider the n ∈ Z+ for which | 1
nB(n)| > ε, or | 1√

nB(n)| > ε
√
n. Let An,ε denote

this event. Since 1√
nB(n) ∼N (0,1), we have

P(An,ε) = 2P(N > ε
√
n) < 2e−ε

2n/2,

and in particular for fixed ε the P(An,ε) over all n ∈ Z+ are summable, so by the Borel-Cantelli

lemma only finitely many An,ε occur. This means that for all but finitely many n ∈ Z+, we have
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| 1
nB(n)| ≤ ε. Also, for q ∈ Q∩ (n,n+ 1), we have

P
(∣∣∣∣ 1
n
(B(q)− B(n))

∣∣∣∣ > ε) ≤ P

(∣∣∣∣∣ 1√q −n(B(q)− B(n))
∣∣∣∣∣ > ε√n

)
,

and since B(q)− B(n) ∼ N (0, q −n) we then have that the same argument from above applies, so

that for all but finitely many q we have | 1
n(B(q)− B(n))| ≤ ε, and so | 1

nB(q)| ≤ 2ε, using the above

result for sufficiently large n. Since the q for which this holds are dense in (n,n+ 1), by continuity

we obtain that for all t ∈ (n,n+ 1), |1t B(t)| ≤ 2ε, for sufficiently large n, which gives the result.

Again, the main use of this transformation is that it connects the behavior of B(t) near zero to its

behavior at infinity. For instance, we can obtain some basic growth bounds.

Corollary 3.3 (Simple Asymptotics). Almost surely,

lim
t→∞

B(t)
t
= 0,

lim sup
t→∞

B(t)√
t
= lim sup

t→0

B(t)√
t
= +∞,

lim inf
t→∞

B(t)√
t
= lim inf

t→0

B(t)√
t
= −∞.

Proof. Let X(t) be the time inversion of B(t). Then, we have limt→∞
B(t)
t = limt→∞X(1

t ), which by

continuity is almost surely equal to X(0) = 0, giving the first claim.

For the second claim, fix c > 0 and define the event

Ec = {B(n) > c
√
n for infinitely many n ∈ Z+},

then by Fatou’s lemma and the scaling property,

PEc ≥ lim sup
n→∞

P{B(n) > c
√
n} = P{B(1) > c},

which is positive (since B(1) = B(1) − B(0) is normally distributed). Also, Ec is a tail event (since

B(n) =
∑n
k=1 (B(k)− B(k− 1)), where the summands are independent), and thus has probability

0 or 1 by Kolmogorov’s 0-1 law, so PEc = 1, and taking the intersection of Ec over all c ∈ Z+
shows that B(n)√

n is unbounded from above almost surely. Time inversion then immediately gives the

second claim: B(t)√t =
√
tX(1

t ), which as t → ∞ is the same as X(t)√
t as t → 0. A symmetric argument

gives the two claims for the infimum.

As we see in the proofs of the second two claims above, time inversion is better adapted to working

with processes of the form B̃(t) = B(t)√
t , which we will identify in its own class.

Definition. A real-valued stochastic process X(t) is called a normalized standard Brownian motion

if
√
tX(t) is a standard Brownian motion. We denote some fixed instance of such a process by B̃(t)

as above, corresponding to our fixed instance B(t) of a standard Brownian motion.

The statement of time inversion for these processes is simply that if B̃(t) is a normalized standard

Brownian motion, then so is B̃(1/t).
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We use the term normalized because the variance of B̃(t) is identically 1 regardless of t; thus,

unlike B(t), B̃(t) has the same distribution at each time point. This is a very useful feature, enabling

us to use bounds on just the standard normal distribution to get relatively strong results for Brow-

nian motion. An additional interesting observation, which we will partly clarify with the law of the

iterated logarithm, is that though for any fixed t we have B̃(t) ∼N (0,1), the above shows that B̃(t)
is still almost surely unbounded. Lastly, while when s < t we had Cov[B(s), B(t)] = s, here we have

Cov[B̃(s), B̃(t)] = 1√
st

Cov[B(s), B(t)] = s√
st
=
√
s
t
,

which tends to zero as st → 0, which is a weak statement of eventual almost-independence of points

sampled along the path of B̃(t). This heuristic idea will be used in the proof of the law of the

iterated logarithm for Brownian motion, where this near-independence will be used in the converse

of the Borel-Cantelli lemma.

4 The Markov Property

As in the finite setting with Markov chains, the Markov property for stochastic processes formalizes

the idea of a process having “no memory”, in that the process starts over at any fixed time.

Theorem 4.1 (Weak Markov Property). Suppose that B(t) is a Brownian motion in Rd. Then for

any s > 0, the process X(t) = B(t + s)− B(s) is a Brownian motion started at the origin and finitely

independent of the process {B(t) : t ∈ [0, s]}.

Proof. That B(t+s)−B(s) satisfies the properties of a Brownian motion is immediate (the increments

are of the form (B(t + a + s) − B(s)) − (B(t + s) − B(s)) = B(t + s + a) − B(t + s) and thus are

also increments of the original Brownian motion). The independence statement follows from the

independence of increments of B(t).

This combined with time inversion allows us to show relatively easily that Brownian motion is

almost surely not differentiable at any fixed point.

Corollary 4.2. For any fixed t ≥ 0, the sample path of B is almost surely not differentiable at t. In

particular, the upper and lower derivatives diverge as follows:

D∗B(t) = lim sup
h→0

B(t + h)− B(t)
h

= +∞,

D∗B(t) = lim inf
h→0

B(t + h)− B(t)
h

= −∞.

Proof. First, suppose t = 0. Let X be the time inversion of B. We then have

D∗B(0) ≥ lim sup
n→∞

B( 1
n)− B(0)

1
n

≥ lim sup
n→∞

√
nB(

1
n
) = lim sup

n→∞
X̃(n),

which we have seen is infinite. By the same argument, D∗B(0) = −∞.

Now, suppose t > 0, then we just apply the above to the walk defined by B′(s) = B(t+ s)−B(t),
which is a standard Brownian motion by the above.
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Note that this is not the statement that the sample path is almost surely nowhere differentiable,

we will prove this later as a consequence of the asymptotic growth bound in the law of the iterated

logarithm. This does however imply that on a countable dense subset of times, such as Q+, the

Brownian motion is again almost surely not differentiable at any of the points in that subset.

Introducing filtrations (let F0 and F+ be as defined in the preliminaries, for the process B(t)),
we can obtain more general results.

Theorem 4.3 (Intermediate Markov Property). The process B(s+t)−B(s) is independent ofF+(s).

Proof. By continuity, if sn ↘ s, then B(t+s)−B(s) = limn→∞(B(sn+t)−B(sn)), and each B(sn+t)−
B(sn) is independent of F+(s), hence B(t + s) − B(s) is independent of F+(s), and the statement

for finite vectors of increments follows similarly.

A useful corollary is that if we define the germ σ -algebra F+(0), then we obtain a 0-1 law for

elements of this σ -algebra.

Corollary 4.4 (Blumenthal 0-1 Law). If A ∈ F+(0), then P(A) ∈ {0,1}.

Proof. By the above proposition, A is independent of itself.

Defining the tail σ -algebra to be T = F∞ =
⋂
t≥0σ(B(s) : s ≥ t), then by time inversion on the

above corollary, we obtain another such law.

Corollary 4.5 (Tail 0-1 Law). If A ∈ F∞, then P(A) ∈ {0,1}.

Proof. Time inversion maps the tail σ -algebra onto the germ σ -algebra, and the result then follows

by the Blumenthal 0-1 law.

This gives an easy proof that Brownian motion changes sign infinitely often both near the origin

and near infinity.

Corollary 4.6. Define the random variables

τ+ = inf
t>0
{B(t) > 0},

τ0 = inf
t>0
{B(t) = 0},

τ− = inf
t>0
{B(t) < 0},

σ+ = sup
t>0
{B(t) > 0},

σ0 = sup
t>0
{B(t) = 0},

σ− = sup
t>0
{B(t) < 0},

then P{τ• = 0} = P{σ• = ∞} = 1.

Proof. By time inversion, it suffices to prove the claim for the first three random variables. By

symmetry, the claim for τ− will follow from that for τ+, and from both of these by the intermediate
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value theorem the claim will follow for τ0, so it suffices to prove the claim for τ+. We have

{τ+ = 0} =
∞⋂
n=1

{
B(ε) > 0 for some ε ∈ (0,1/n)

}
∈ F+(0),

so it has probability either 0 or 1. And, we have P{τ+ ≤ t} ≥ P{B(t) > 0} = 1
2 > 0, so the probability

P{τ+ = 0} is positive and thus 1.

Now, we apply our principle of pushing results for deterministic times through to all stopping

times by the following extension of these results.

Theorem 4.7 (Strong Markov Property). For every almost surely finite stopping time T , the process

B(T + t)− B(T) is a standard Brownian motion independent of F+(T).

Proof of Strong Markov Property. Let us define a sequence of decreasing discrete approximations

Tn ↘ T by Tn = (m+ 1)2−n whenever T ∈ [m2−n, (m+ 1)2−n), where we are just “rounding T up”

to lie in a discrete dyadic set. We will first show that the statement holds for the Tn. After this, the

general result follows easily since we have

B(s + t + T)− B(t + T) = lim
n→∞

B(s + t + Tn)− B(t + Tn),

which gives the distribution and independence of the increments, as well as independence from

F+(T), since F+(T) ⊂ F+(Tn) for each n.

To prove the statement for the stopping time Tn, define two more Brownian motions:

Bk(t) = B(t + k
2n
)− B( k

2n
),

B∗(t) = B(t + Tn)− B(Tn).

Note that B∗ = Bk if and only if Tn = k
2n , and so the Bk are in this sense piecewise components of

B∗. Now, suppose we have some event E ∈ F+(Tn). Then, for any event {B∗ ∈ A}, we have

P({B∗ ∈ A} ∩ E) =
∞∑
k=0

P
(
{Bk ∈ A} ∩ E ∩ {Tn = k2−n}

)

=
∞∑
k=0

P
(
{Bk ∈ A}

)
· P

(
E ∩ {Tn = k2−n}

)
,

since by the intermediate Markov property, {Bk ∈ A} is independent of E ∩ {Tn = k2−n} ∈
F+(k2−n). By the weak Markov property, P({Bk ∈ A}) does not depend on k since all Bk are

standard Brownian motions, so we have P{Bk ∈ A} = P{B ∈ A} and thus continuing the above,

P({B∗ ∈ A} ∩ E) = P{B ∈ A}
∞∑
k=0

P(E ∩ {Tn = k2−n}) = P{B ∈ A}P(E),

hence B∗ is a standard Brownian motion and is independent of E, for all E ∈ F+(Tn), which shows

the claim for Tn and completes the proof.
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One important application is the reflection principle, which allows us not only to restart but also to

reflect a Brownian motion at any stopping time.

Theorem 4.8 (Reflection Principle). If T is an almost surely finite stopping time and B(t) a stan-

dard brownian motion, then the process

B∗(t) =
{
B(t) t ≤ T ,
2B(T)− B(t) t > T

is also a standard Brownian motion.

Proof. By the strong Markov property, both B(T + t) − B(T) and −(B(T + t) − B(t)) are standard

Brownian motions. Concatenating either of them to the standard Brownian motion B(t) on the

interval [0, T ] then gives two stochastic processes with the same distributions. But, concatenating

the first gives B(t), and concatenating the second gives B∗(t), thus B∗(t) is a standard Brownian

motion.

This gives a direct attack on the question of the distribution of the maximum of Brownian motion

(one of our motivating limit functionals from the introduction), the process

M(t) = max
s∈[0,t]

B(t).

The elegant description is proven easily by the reflection principle.

Corollary 4.9. For each fixed t, M(t) has the same law as |B(t)|.

Proof. Let a > 0, then we want to show that P{M(t) > a} = P{|B(t)| > a}. Let T = Ha be the hitting

time of a, and let B∗(t) be Brownian motion reflected at T . Then,

{M(t) > a} = {B(t) > a} ∪ {M(t) > a and B(t) ≤ a}.

This union is disjoint, and the second event {B∗(t) ≥ a}. So,

P{M(t) > a} = 2P{B(t) > a} = P{|B(t)| > a}.

5 The Martingale Property

Another general property of stochastic processes that Brownian motion enjoys is the martingale

property, which instead of describes not the time invariance of a process but a certain stationarity

of its conditional distributions at points in time.

Definition. A process X(t) adapted to a filtration F(t) is called a martingale with respect to the

filtration if E[|X(t)|] < ∞ for each t ≥ 0, and for any 0 ≤ s ≤ t we have E[X(t) | F(s)] = X(s)
almost surely. It is called a local martingale on t ∈ [0, T ] if there exist stopping times Tn increasing

almost surely to T so that X(t ∧ Tn) is a martingale for each n.

13



By the Markov property, standard Brownian motion is a martingale with respect to F+(t):

E[B(t) | F+(s)] = E[B(t)− B(s) | F+(s)]+ E[B(s) | F+(s)]
= E[B(t)− B(s)]+ B(s)
= B(s).

On the other hand, normalized standard Brownian motion, though it is stationary in distribution, is

not a martingale:

E
[

1√
t
B(t)

∣∣∣∣F+(s)] = 1√
t
E
[
B(t)

∣∣∣∣F+(s)] = 1√
t
B(s),

so on the average we predict the process to drift towards the origin as time goes on from any given

point; a martingale is not allowed to have any such bias. We will use a standard fact about martin-

gales extensively, which applies our principle of extending deterministic time results to stopping

times to the defining martingale property. A proof can be found in [2, Theorem 6.12].

Theorem 5.1 (Optional Stopping). Let X(t) be a continuous martingale, and 0 ≤ S ≤ T be stopping

times. If there is a random variable Z so that the process X(t ∧ T) is dominated by Z almost surely

at every time, then almost surely we have

E[X(T) | F(S)] = X(S).

The optional stopping theorem applied to Brownian motion gives Wald’s lemmas, which identify

the first two moments of B(T) for a stopping time T . Applying the optional stopping theorem to

Brownian motion with S = 0 gives us the first moment of B(T) for an integrable stopping time T
directly.

Corollary 5.2 (Wald’s First Lemma). Let T be a stopping time so that B(t ∧ T) is dominated by an

integrable random variable, then E[B(T)] = 0.

A technical result gives that in fact the condition here holds whenever E[T] <∞, a more applicable

version of the result. One application is an orthogonality (or weak independence) statement for

B(S) and B(T)− B(S).

Corollary 5.3. Let S ≤ T be stopping times with E[T] <∞. Then,

E[B(T)2] = E[B(S)2]+ E[(B(T)− B(S))2].

Proof. Note that in the L2 space of random variables with the expectation inner product, this is

the statement that B(S) and B(T) − B(S) are orthogonal. By the tower property of conditional

expectation, we have

E[B(T)]2 = E[B(S)2]+ 2E
[
B(S)E(B(T)− B(S) | F(S))

]
+ E[(B(T)− B(S))2].

By linearity of expectation and the martingale property, the inner expectation here is zero, and the

result follows.

To identify the second moment of B(T), we identify another martingale besides B(t) itself.
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Lemma 5.4. B(t)2 − t is a martingale.

Proof. That the process is adapted to the filtration corresponding to B(t) is immediate, and we have

E[B(t)2 − t | F+(s)] = E[(B(t)− B(s))2 | F+(s)]+ 2E[B(t)B(s) | F+(s)]− B(s)2 − t
= (t − s)+ 2B(s)2 − B(s)2 − t
= B(s)2 − s.

Next, we obtain the second moment of B(T).

Theorem 5.5 (Wald’s Second Lemma). Let T be a stopping time with E[T] < ∞. Then, we have

E[B(T)2] = E[T].

Proof. Define the stopping times Tn = inf{t ≥ 0 : |B(t)| = n}, the hitting times of positive integer

n by |B(t)|. Now, we have B(t ∧ T ∧ Tn)2 − t ∧ T ∧ Tn dominated by n2 + T , an integrable random

variable, and by the optional stopping theorem E[B(T∧Tn)2] = E[T∧Tn]. Using monotone converge

and Fatou’s lemma to bound E[B(T)2] by the limits of the E[B(T ∧ Tn)2] from below and above

respectively, the result follows.

For us, these results are only of instrumental use in preparing for the Skorokhod embedding in

the next section. However, in general the relationship between martingales and the universality of

Brownian motion is far deeper: firstly, by a theorem of Lévy, B(t) is unique in being a martingale and

having B(t)2 − t be a martingale as well; secondly, by a theorem of Dambis, Dubins, and Schwarz,

any continuous (local) martingale is actually Brownian motion, after a time change.

6 Discrete Random Walks: Skorokhod Embedding

We are now equipped to see the application of Brownian motion to discrete random walks and vice-

versa, as outlined in the introduction. The next two sections will yield two tools for “embedding”

discrete random walks in Brownian motion in different ways, and will give applications of these

tools to various limit theorems regarding discrete random walks, whose proof is eased by going

through continuous Brownian motion.

Our first step is to produce a converse to Wald’s lemmas, which given a random variable X
produces a stopping time T so that B(T) has the probability law of T . By Wald’s lemmas, for an

integrable stopping time T we also have E[B(T)] = 0 and E[B(T)2] = E[T] < ∞, so there is only

hope of producing T so that B(T) ∼ X if E[X] = 0 and E[X2] < ∞. Our theorem will give us that

these are the only obstructions to the construction of such a T .

Theorem 6.1 (Skorokhod Embedding Theorem). Suppose X is a real-valued random variable with

E[X] = 0 and E[X2] <∞, then there is a stopping time T so that B(T) ∼ X and E[T] = E[X2].

We first prove the theorem for the simple case of X taking on only two values.

Lemma 6.2. If X takes on only the values a < 0 and b > 0 with E[X] = 0, then there a Skorokhod

embedding T , where E[T] = −ab.
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Proof. Since E[X] = 0, we must have P{X = a} = b
b−a and P{X = b} = −a

b−a . Then, define

T = inf{t > 0 : B(t) ∉ (u,v)}

to be the exit time of (u,v). Clearly this is a stopping time, and by Wald’s first lemma we have

E[B(T)] = 0. This means that

0 = aP{B(T) = a} + bP{B(T) = b},

which in combination with P{B(T) = a}+P{B(T) = b} = 1 gives after a simple algebraic manipula-

tion that B(T) has the same distribution as X.

To use Wald’s second lemma, we must check E[T] <∞:

E[T] =
∫∞

0
P{T > t}dt =

∫∞
0

P{B(s) ∈ (a, b) for all s ∈ [0, t]}dt,

and we have lettingm =maxx∈(a,b) Px{B(1) ∈ (a, b)}, some constant, that the integrand is at most

mk when t ≥ k. Thus, the integral converges. So, by Wald’s second lemma and the probabilities for

B(T), we have

E[T] = E[B(T)2] = a2b
b − a +

−b2a
b − a = −ab.

So, we have that we can embed any probability measure with support at two points. Now, we will

express a general probability measure with the correct mean and variance properties as an average

of a continuum of such probability measures. This will allow us to generalize from the above result

immediately to the embedding full result.

Lemma 6.3. Let µ be a probability measure on R, with
∫
xdµ = 0 and σ2 =

∫
x2dµ <∞. Then, there

is a probability measure θ on (−∞,0)× [0,∞), such that

µ(A) =
∫ (

y
y − xχA(x)+

−x
y − xχA(y)

)
dθ,

and also σ2 =
∫
−xydθ.

Proof. Let m =
∫
[0,∞)ydµ = −

∫
(−∞,0)udµ, then we define

θ(d(x,y)) = 1
m
(y − x)µ(dx)µ(dy),

a scaling of the product measure µ(du)µ(dv) by 1
m(y−x). Then, to check that this is a probability

measure, note ∫
dθ = 1

m

∫
(−∞,0)

dµ(dx)
∫
[0,∞)

µ(dy)(y − x)

= 1
m

∫
(−∞,0)

µ(dx)(m− xµ([0,∞)))

= 1
m

(
mµ((−∞,0))+mµ([0,∞))

)
= 1
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thus θ is indeed a probability measure. And, we have∫ (
y

y − xχA(x)+
−x
y − xχA(y)

)
dθ = 1

m

∫
(−∞,0)

µ(dx)
∫
[0,∞)

µ(dy)(yχA(x)− xχA(y))

=
∫
(−∞,0)

µ(dx)χA(x)+
∫
[0,∞)

µ(dy)χA(y)

= µ(A),

and the last property is checked in the same way.

Proof of Skorokhod Embedding. Let X be arbitrary with E[X] = 0 and E[X2] = σ2 < ∞. Let µ be

the probability law of X, and θ as in the second lemma above. And, let ξ = (ξx, ξy) be a random

variable taking values in (−∞,0)× [0,∞) with distribution given by the measure θ. Denote by Tx,y
the stopping time constructed in the first lemma above, for the random variable taking values x
and y . Let G(t) be the filtration generated by F0(t) together with ξ, and let T = Tξx ,ξy .

We have T ≤ Tu,v when u < ξx and v > ξy , and combining this with the continuity of B(t) we

obtain

{T ≤ t} =
⋃
u,v∈Q
u<0<v

(
{ξ ∈ (u,0)× [0, v)} ∩ {Tu,v ≤ t}

)
∈ G(t),

so T is a stopping time with respect to G(t). We have for r < 0 that

P(X ≤ r) =
∫
(−∞,r ]×[0,∞)

y
y − xdθ

=
∫
(−∞,r ]×[0,∞)

P{B(Tu,v) = u}

= P{B(T) ≤ x}

and in the same way for r ≥ 0 we have P{X > r} = P{B(T) > x}, hence B(T) ∼ X. And, we have

E[T] = −E[ξxξy] = −
∫
uvdθ = σ2.

As an intermediate application, we will show the power of this theorem by proving the law of the

iterated logarithm for Brownian motion and then inferring it for discrete random walks.

6.1 Application: The Law of the Iterated Logarithm (LIL)

We saw in our elementary asymptotic bounds that the standard Brownian motion B(t) is almost

surely dominated by t, in that B(t)t → 0 almost surely, but is almost surely not dominated by
√
t,

in that B(t)√
t is of unbounded variation almost surely. We would like to identify a function ψ(t)

that is deterministic and gives an asymptotic envelope for B(t), in that lim supt→∞
B(t)
ψ(t) = 1 and

lim inft→∞
B(t)
ψ(t) = −1 almost surely. The basic bounds give

√
t � ψ(t) � t, and we will show that

in fact the lower bound is very close to the envelope, in that taking ψ(t) =
√

2t`(t) gives the two

results above, where `(t) = log log(t) is the namesake iterated logarithm. First, we give a heuristic

reason to believe that this is the correct function.

Recall that we defined B̃(t) = B(t)√
t earlier, where the distribution of B̃(t) is standard normal for

all t > 0. Then, the statements about B(t) and ψ(t) above are equivalent to the same statements
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for B̃(t) and ψ̃(t) =
√

2`(t). Combining the asymptotic in 8.3 and the standard normal distribution

of B̃(t), we find

P{B(t) > Lψ(t)} = P{B̃(t) > Lψ̃(t)}

∼ 1
Lψ̃(t)

1√
2π
e−

L2ψ̃(t)2
2

= L√
2`(t)

1√
2π
e−L

2`(t)

= L
2
√
π`(t)

(log(t))−L
2
.

Now, ideally we could choose some collection of t increasing to infinity so that the events whose

probability we are estimating above are independent, then the question of whether infinitely many of

them occur would reduce to the summability of the series whose terms are the final approximation

by the Borel-Cantelli lemma. Unfortunately, these events will not be independent; however, we will

see that we can achieve near-independence by taking rapidly increasing t. In particular, if we fix

some a > 1 and make the change of variables t = au, then the above becomes

P{B(t) > Lψ(t)} ∼ L
2
√
π`(au)

(u log(a))−L
2
,

which is summable as a series over positive integer u if and only if L > 1. Were these events to

be independent, this would be precisely what we need to apply Borel-Cantelli and obtain our result.

The work that remains is to circumvent the fact that these events are not in fact independent, which

will ultimately reduce to taking a limit as a→∞, since as the points au become increasingly distant,

they “approach independence”, and the summability criterion does not depend on a.

Theorem 6.4 (LIL for Brownian Motion). If B(t) is a standard Brownian motion andψ(t) =
√

2t`(t),
then almost surely

lim sup
t→∞

B(t)
ψ(t)

= 1 and lim sup
t→∞

B(t)
ψ(t)

= −1.

Proof. Note that by the symmetry of reflection at the origin, the second claim follows immediately

from the first, so it suffices to consider the supremum. The easier part is bounding the supre-

mum from above, since there we can use the direction of the Borel-Cantelli lemma not requiring

independent events, which gives the result easily.

Letting a > 1 and ε > 0, define the event

An =
{

max
t∈[0,an]

B(t) ≥ (1+ ε)ψ(qn)
}
.

By Corollary 4.9, the maximum of B(t) up to a fixed time t0 has the same distribution as |B(t0)|, so

applying this and transfering to the normalized Brownian motion and corresponding bound,

PAn = P
{
|B(an)| ≥ (1+ ε)ψ(an)

}
= P{|B̃(an)| ≥ (1+ ε)ψ̃(an)}
= 2P{B̃(an) ≥ (1+ ε)ψ̃(an)}
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where the last step follows by symmetry. Now, we apply the tail bound for the standard normal

variable B̃(an) and discard non-exponential terms to obtain

PAn ≤ 2 · 1
(1+ ε)ψ̃(an)

1√
2π
e−

(1+ε)2ψ̃(an)2
2 ≤ 2e−(1+ε)

2 log log(an)2 = 2

(n loga)(1+ε)2
.

This series is summable in n, so by Borel-Cantelli we have that almost surely, only finitely many of

the An occur. Now, given a large t, let n be such that an−1 ≤ t < an, then we expand

B(t)
ψ(t)

= B(t)
ψ(an)

· ψ(a
n)

an
· t
ψ(t)

· a
n

t
= B(t)
ψ(an)

·
ψ(an)
an
ψ(t)
t

· a
n

t
.

The first term is almost surely eventually bounded by (1+ ε) by what we have just shown, the last

term is at most a, and the middle term is bounded by 1 since ψ(s)
s is a decreasing function. Thus,

B(t)
ψ(t) ≤ a(1 + ε) almost surely for all large t, and letting ε → 0 and a → 1 gives lim sup B(t)

ψ(t) ≤ 1

almost surely.

To bound the supremum from below, we need the converse Borel-Cantelli lemma, and thus need

to produce a sequence of independent events. Again fixing a > 1, we define the events

Dn = {B(an)− B(an−1) ≥ ψ(an − an−1)},

which are independent since the increments B(an)−B(an−1) are independent. The random variable

B(an)− B(an−1) is normal with mean zero and variance an − an−1, so

PDn = P

{
N ≥ ψ(a

n − an−1)√
an − an−1

}
= P{N ≥ ψ̃(an − an−1)}.

Applying the tail lower bound from 8.2, we have for some c > 0 that

PDn ≥
c√

2 log log(an − an−1)
e− log log(qn−qn−1) ≥ ce− log(n loga)√

2 log(n loga)
>

d
n logn

for some other constant d > 0, and so in particular the series of PDn is not summable, thus by the

converse of Borel-Cantelli we have almost surely, infinitely many of the Dn occur. Combining this

with the upper bound proved above, for infinitely many n we have

B(qn) ≥ B(qn−1)+ψ(qn − qn−1) ≥ −2ψ(qn−1)+ψ(qn − qn−1).

So, almost surely for infinitely many n,

B(qn)
ψ(qn)

≥ −2ψ(qn−1)+ψ(qn − qn−1)
ψ(qn)

≥ − 2
√q +

qn − qn−1

qn
= 1− 2

√q −
1
q
,

and taking q →∞ gives the lower bound, completing the proof.

Using this, we can obtain a general result for discrete random walks with relatively little work (the

discrete combinatorial proofs of this theorem are much more technical and lengthy).
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Theorem 6.5 (Hartman-Wintner LIL). Let Sn be a random walk with increments Sn − Sn−1 of mean

0 and variance 1. Then,

lim sup
n→∞

Sn√
2n log logn

= 1.

Proof. Let T1 ≤ T2 ≤ · · · be a sequence of stopping times as from the Skorokhod embedding so

that Sn ∼ B(Tn), and where Tn − Tn−1 = Var(S2 − S1) = 1. By the LIL for Brownian motion, we have

lim sup
t→∞

B(t)√
2t log log t

= 1,

almost surely, and so it suffices to show that

lim sup
t→∞

B(t)− B(Tbtc)
2t log log t

= 0

almost surely. By the law of large numbers, 1
nTn → 1 almost surely, so letting ε > 0 and t0 large

enough such that
1

1+ ε ≤
Tbtc
t
≤ 1+ ε

for all t ≥ t0. Then, we define

M(t) = sup
s∈[ t

1+ε ,t(1+ε)]
|B(s)− B(t)|,

and note that it suffices to show that

lim sup
t→∞

M(t)√
2t log log t

= 0

almost surely. Let tn = (1+ ε)n, and

Ln = sup
s∈[tn−1,tn+2]

|B(s)− B(tn−1)|.

Then, by the triangle inequality we have when t ∈ [tn, tn+1], then M(t) ≤ 2Ln. Let δ = (1+ ε)3 − 1,

then tn+2 − tn−1 = δtn−1. Scaling and the reflection principle then gives

P
(
Ln >

√
3δtn−1 log log tn−1

)
= P

(
sup
s∈[0,1]

|B(s)| >
√

3 log log tn−1

)

≤ 2P

(
sup
s∈[0,1]

B(s) >
√

3 log log tn−1

)

= 4P
(
B(1) >

√
3 log log tn−1

)
≤ 2√

3 log log tn−1
exp

(
−3

2
log log tn−1

)
≤ n−

3
2
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for n sufficiently large. These probabilities are summable, so by the Borel-Cantelli lemma,

lim sup
t→∞

M(t)√
t log log t

≤ lim sup
n→∞

2Ln√
tn−1 log log tn−1

≤ 2
√

3δ,

and letting ε → 0 we have δ→ 0, completing the proof.

7 Discrete Random Walks: Donsker Invariance Principle

We lastly turn to proving the functional central limit theorem described in the introduction. Letting

Xi be i.i.d random variables, normalized so that E[Xi] = 0 and Var(Xi) = 1 (this is really just the

assumption of finite mean and variance for the Xi), we will consider the random walk Sn =
∑n
k=1Xk

and produce a continuous random process S(t) by interpolating linearly between these integer

points:

S(t) = Sbtc + {t}(Sbtc+1 − Sbtc).

We now define a family S∗n of derived stochastic processes by

S∗n (t) =
1√
n
S(nt)

for t ∈ [0,1]. Intuitively, S∗n scales S(t) on [0, n] into the interval [0,1].

Theorem 7.1 (Donsker Invariance Principle). On the space C[0,1] of continuous functions on [0,1]
with the metric induced by the supremum norm, the sequence S∗n converges in distribution to a

standard Brownian motion B(t) on t ∈ [0,1].

Lemma 7.2. For any random variable X with mean 0 and variance 1, there is a sequence of stopping

times 0 = T0 ≤ T1 ≤ · · · such that B(Tn) has the distribution of the random walk Sn defined by

adding independent variables identical to X, and the sequence of functions S∗n satisfies

lim
n→∞

P

 ∑
t∈[0,1)

∣∣∣∣B(nt)√
n
− S∗n (t)

∣∣∣∣ > ε
 = 0.

Proof. By Skorokhod embedding, choose a stopping time T1 with E[T1] = 1 so that B(T1) ∼ X. By

the strong Markov property, B2(t) = B(T1 + t) − B(T1) is a Brownian motion and independent of

F+(T1). In particular, B2(t) is independent of both T1 and B(T1). Thus, we can choose a stopping

time T ′2 so that E[T ′2] = 1 and B2(T ′2) ∼ X. Then, T2 = T1 + T ′2 is a stopping time for B(t) with

E[T2] = 2, and so that B(T2) ∼ S2 = X1 + X2. We repeat this inductively to produce a sequence

0 ≤ T1 ≤ T2 ≤ · · · where B(Tn) ∼ Sn and E[Tn] = n.

It remains to verify the convergence statement. Let us write

Bn(t) =
B(nt)√
n

and let An be the event that there exists t ∈ [0,1) with |S∗n (t) − Bn(t)| > ε, then we must show

P(An) → 0. Let k be such that k−1
n ≤ t < k

n , then since S∗n is linear on this interval, we have that An
is contained in the union of there being a t ∈ [0,1) such that | Sk√n − Bn(t)| > ε, and of there being a
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t such that |Sk−1√
n − Bn(t)| > ε. Since Sk = B(Tk) =

√
nBn(

Tk
n ), we have

An ⊆ {∃t ∈ [0,1) : |Bn(Tk/n)− Bn(t)| > ε} ∪
{∃t ∈ [0,1) : |Bn(Tk−1/n)− Bn(t)| > ε}.

Let A∗n be the event on the right-hand side. Then, for any 0 < δ < 1, we have

A∗n ⊆ {∃s, t ∈ [0,2] : |s − t| < δ, |Bn(s)− Bn(t)| > ε} ∪
{∃t ∈ [0,1) : |Tk/n− t| ∨ |Tk−1/n− t| ≥ δ}.

Note that the first event here does not depend on n, and its probability tends to zero as δ→ 0 since

Brownian motion is uniformly continuous on [0,2]. So, it remains to show that for any δ > 0, the

probability of the second set above tends to zero as n → ∞. To prove this, we huse that by the

law of large numbers, limn→∞
Tn
n = 1, and thus limn→∞ sup0≤k≤n |Tkk − k|/n = 0. This gives that

P(A∗n)→ 0, completing the proof.

Proof of Donsker Invariance Principle. Choose the stopping times Ti as in the lemma, and note that

Bn(t) is a standard Brownian motion by scaling invariance. Suppose K ⊆ C([0,1]) is closed and let

Kε = {f ∈ C([0,1]) : ‖f − g‖∞ ≤ ε for some g ∈ K}.

Then, we have P{S∗n ∈ K} ≤ P{Bn ∈ Kε} + P{‖S∗n − Bn‖∞ > ε}. The second term tends to zero

as n → ∞, and the first term is independent of n since the Bn are identical in law, and is equal to

P{B ∈ Kε} for a fixed standard Brownian motion B. Since K is closed, we have

lim
ε→0

P{B ∈ Kε} = P

B ∈ ⋂
ε>0

Kε

 = P{B ∈ K},

and so lim supn→∞ P{S∗n ∈ K} ≤ P{B ∈ K}. The result then follows as this is one of the equivalent

conditions from the portmanteau theorem.

We recall our corollary from the introduction that motivated the limit theorem.

Corollary 7.3. For any continuous functional Λ : C([0,1])→ R, we have Λ(S∗n )⇒ Λ(B).

A wide variety of limit theorems for discrete random walks are now readily available by one of two

techniques: firstly, we can just directly compute limiting distributions on B(t) if it is convenient,

or alternatively we can compute limiting distributions on a particular well-behaved discrete random

walk, say the simple symmetric random walk, since we know that limit laws will not depend on

the specific random walk. Two examples mentioned in the introduction illustrate these methods;

we first note in passing that since the central limit theorem is an easy corollary of this theorem,

we have actually found a new proof of the central limit theorem which, though rather roundabout,

makes no reference to characteristic functions or Fourier analysis.

For the maximum of the discrete random walk, if we let Mn = max1≤k≤n Sk, then 1√
nMn ⇒

supt∈[0,1] B(t), which by Corollary 4.9 has the distribution of |B(1)|, or |N (0,1)|.
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For the proportion of time spent above the x-axis, we have

1
n

#{k : 1 ≤ k ≤ n, Sk > 0} ⇒m({s ∈ [0,1] : B(s) > 0}),

and so in particular the limiting law for a particular discrete random walk is the same as that for

all discrete walks. So, the limiting law is the same as that for the simple symmetric random walk,

which from classical theory follows the arcsine distribution [1, Section 3.10].

8 Appendix

8.1 Standard Normal Distribution Bounds

Some basic bounds on the tails of the standard normal distribution are useful.

Lemma 8.1 (Tail Bounds). Suppose N is a random variable with standard normal distribution, then

for any x > 0, we have

1

x + 1
x

1√
2π
e−x

2/2 ≤ P{N (0,1) > x} ≤ 1
x

1√
2π
e−x

2/2.

Proof. For the inequality on the right, we estimate

P{N (0,1) > x} ≤ 1√
2π

∫∞
x

u
x
e−

u2

2 du = 1
x

1√
2π
e−

x2

2 .

For the inequality on the left, define

f(x) = xe−
x2

2 − (x2 + 1)
∫∞
x
e−

u2

2 du,

so that f(0) < 0 and f(x)→ 0 as x →∞. We also have

f ′(x) = −2x

∫∞
x
e−

u2

2 du− e
−x

2

2

x

 ,
which is positive for x > 0 by the other inequality proved above. Thus, f(x) ≤ 0 for all x, complet-

ing the proof.

For technical work, a simplified version is usually enough for us.

Corollary 8.2. There is a universal constant c > 0 such that

c
x
e−x

2/2 ≤ P{N (0,1) > x} ≤ e−x2/2.

For heuristics, an asymptotic version is useful.

Corollary 8.3. For large x,

P{N (0,1) > x} ∼ 1
x

1√
2π
e−x

2/2.
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